STUDI KOMPARASI OPTIMASI PARTICLE SWARM DAN ALGORITMA GENETIKA PADA PERANCANGAN FOIL

Eva Hertnacahyani Herraprastanti, Helmi Gunawan, E. Santoso
{"title":"STUDI KOMPARASI OPTIMASI PARTICLE SWARM DAN ALGORITMA GENETIKA PADA PERANCANGAN FOIL","authors":"Eva Hertnacahyani Herraprastanti, Helmi Gunawan, E. Santoso","doi":"10.31949/J-ENSITEC.V5I02.1500","DOIUrl":null,"url":null,"abstract":"Foil is a ship installed wings at bottom of hull support. If the speed’s ship increases, foil will produce a lift that causes the hull rised and exit from the water. Therefore, there will be a reduction in friction force that results in the ship's velocity increase. The choice of foil is important to improve the ship performance. The study aims to compare 2 optimization methods, namely Genetic Algorithm (GA) and Particle Swarm (PSO) produce maximum lift and minimum drag. The designed foil is Joukowsky type with angle of attack 2°, 4°, 6°, 8°, 10° and 150,000 Reynold numbers. The method is used to state initial geometry of Joukowsky foil, iterated JavaFoil, optimized by GA and PSO using GNU Octave software. They are compared foil produces the maximum optimum C L /C D value. Validation of lift coefficient (C L ) and drag (C D ) Airfoil S9000 is almost similiar with the Williamson experiment. Stall is at angle of attack 9.3 o , with C L error of 3.66%, C D error of 6.83%. It results in the allowed tolerances are below 9.5%. Validation with JavaFoil Solver shows accurate results, with error of 4.15%. GA optimization produces C L /C D averages of 41,777 so it grows 6,544%. Whereas the C L /C D average PSO is 36,197, improve of 4,793%. GA optimization has a fairly high convergence speed at the first, then followed by stagnation process, the resulted solution improves significantly. PSO is focused on local search so convergence is difficult to achieve. The recommended foil optimization is to use GA. Keywords: Drag, GA, Hydrofoil, Lift, PSO","PeriodicalId":448230,"journal":{"name":"J-ENSITEC","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"J-ENSITEC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31949/J-ENSITEC.V5I02.1500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Foil is a ship installed wings at bottom of hull support. If the speed’s ship increases, foil will produce a lift that causes the hull rised and exit from the water. Therefore, there will be a reduction in friction force that results in the ship's velocity increase. The choice of foil is important to improve the ship performance. The study aims to compare 2 optimization methods, namely Genetic Algorithm (GA) and Particle Swarm (PSO) produce maximum lift and minimum drag. The designed foil is Joukowsky type with angle of attack 2°, 4°, 6°, 8°, 10° and 150,000 Reynold numbers. The method is used to state initial geometry of Joukowsky foil, iterated JavaFoil, optimized by GA and PSO using GNU Octave software. They are compared foil produces the maximum optimum C L /C D value. Validation of lift coefficient (C L ) and drag (C D ) Airfoil S9000 is almost similiar with the Williamson experiment. Stall is at angle of attack 9.3 o , with C L error of 3.66%, C D error of 6.83%. It results in the allowed tolerances are below 9.5%. Validation with JavaFoil Solver shows accurate results, with error of 4.15%. GA optimization produces C L /C D averages of 41,777 so it grows 6,544%. Whereas the C L /C D average PSO is 36,197, improve of 4,793%. GA optimization has a fairly high convergence speed at the first, then followed by stagnation process, the resulted solution improves significantly. PSO is focused on local search so convergence is difficult to achieve. The recommended foil optimization is to use GA. Keywords: Drag, GA, Hydrofoil, Lift, PSO
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
翼片是一种安装在船体底部的机翼支撑装置。如果船的速度增加,箔片将产生升力,使船体上升并离开水面。因此,摩擦力会减少,从而导致船舶的速度增加。翼型的选择对船舶性能的提高具有重要意义。研究的目的是比较遗传算法(GA)和粒子群算法(PSO)两种优化方法产生最大升力和最小阻力。设计的箔片为Joukowsky型,攻角为2°,4°,6°,8°,10°,150,000雷诺数。将该方法应用于Joukowsky箔的初始几何状态,迭代JavaFoil,利用GNU Octave软件进行遗传算法和粒子群算法优化。它们比较箔产生的最大最佳C /C / D值。升力系数(C L)和阻力(C D)翼型S9000的验证几乎与威廉姆森实验相似。失速为攻角9.3°,C - L误差3.66%,C - D误差6.83%。其结果是允许公差低于9.5%。JavaFoil求解器验证结果准确,误差为4.15%。GA优化产生的C /C / D平均值为41,777,因此它增长了6,544%。而信用证/信用证承兑交单的平均PSO为36,197,提高了4,793%。遗传算法优化在初始阶段具有较高的收敛速度,然后是停滞过程,得到的解有明显改善。粒子群算法主要关注局部搜索,收敛性较差。推荐箔片优化是采用遗传算法。关键词:阻力,GA,水翼,升力,PSO
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EVALUASI KEGAGALAN HASIL PRODUKSI MESIN POTONG PLASTIK MENGGUNAKAN METODE DMAIC DI PT. XYZ PERANCANGAN PRODUK CONVERTIBLE BAG DENGAN PANEL SURYA YANG ERGONOMIS MENGGUNAKAN METODE QUALITY FUNCTION DEPLOYMENT (QFD) SISTEM INFORMASI PENDAFTARAN SISWA BARU DI SD ISLAM HASANKA PALANGKARAYA BERBASIS WEB PENGARUH KEKERASAN PADA CYBERBULLYING TERHADAP PERILAKU MASYARAKAT PADA MASA COVID-19 PERANCANGAN ALAT MONITORING KONDISI LINGKUNGAN DAN PREDIKSI CUACA BERTENAGA SURYA BERBASIS MIKROKONTROLER MENGGUNAKAN METODE FUZZY LOGIC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1