{"title":"Physical-Based SPICE Model of CMOS STI y-Stress Effect","authors":"P. Tan, A. Kordesch, O. Sidek","doi":"10.1109/SMELEC.2006.380737","DOIUrl":null,"url":null,"abstract":"In this paper, we proposed a new physical-based equation to model the CMOS transistor STI y-stress (in the direction of channel width). It can be used in any SPICE MOS model and it has been verified on 0.13 um CMOS transistors. The physical characteristics of the compressive STI y-stress effect on saturation drain current, Idsat are captured by using a new proposed transistor layout method. The equation that is able to describe the physical characteristics of the STI y-stress effect is incorporated into the electron and hole mobility, uO of the SPICE model to capture the y-stress effect on Idsat. With the combination of the new y-stress parameters and the default delta width parameters in the SPICE model, we are able to fit the simulation curve to the hook shaped Idsat curve from the actual silicon data.","PeriodicalId":136703,"journal":{"name":"2006 IEEE International Conference on Semiconductor Electronics","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Semiconductor Electronics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMELEC.2006.380737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
In this paper, we proposed a new physical-based equation to model the CMOS transistor STI y-stress (in the direction of channel width). It can be used in any SPICE MOS model and it has been verified on 0.13 um CMOS transistors. The physical characteristics of the compressive STI y-stress effect on saturation drain current, Idsat are captured by using a new proposed transistor layout method. The equation that is able to describe the physical characteristics of the STI y-stress effect is incorporated into the electron and hole mobility, uO of the SPICE model to capture the y-stress effect on Idsat. With the combination of the new y-stress parameters and the default delta width parameters in the SPICE model, we are able to fit the simulation curve to the hook shaped Idsat curve from the actual silicon data.
在本文中,我们提出了一个新的基于物理的方程来模拟CMOS晶体管的STI应力(在通道宽度方向上)。它可用于任何SPICE MOS模型,并已在0.13 um CMOS晶体管上进行了验证。采用一种新的晶体管布局方法,捕获了压缩应力对饱和漏极电流影响的物理特性。将能够描述y-应力效应物理特性的方程纳入SPICE模型的电子和空穴迁移率uO中,以捕捉y-应力对Idsat的影响。结合SPICE模型中新的y应力参数和默认的δ宽度参数,我们可以将模拟曲线与实际硅数据的钩形Idsat曲线拟合。