Data-driven technique for robust fault detection in generators

Abeer Fatima, Abdul Qayyum Khan
{"title":"Data-driven technique for robust fault detection in generators","authors":"Abeer Fatima, Abdul Qayyum Khan","doi":"10.1109/RAEE.2015.7352759","DOIUrl":null,"url":null,"abstract":"Protection of a synchronous generator presents a very challenging problem because of its simultaneous system connections on three different sides; the prime mover, grid and the source of DC excitation. Generator Model is a very extensive and complex model and model-based fault detection techniques are difficult to implement. For this data-driven techniques can be applied which need only the process data to establish FDD systems. This paper presents application of subspace aided system identification method and robust residual evaluation using the process data directly, to detect actuator faults occuring in synchronous generators.","PeriodicalId":424263,"journal":{"name":"2015 Symposium on Recent Advances in Electrical Engineering (RAEE)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 Symposium on Recent Advances in Electrical Engineering (RAEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAEE.2015.7352759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Protection of a synchronous generator presents a very challenging problem because of its simultaneous system connections on three different sides; the prime mover, grid and the source of DC excitation. Generator Model is a very extensive and complex model and model-based fault detection techniques are difficult to implement. For this data-driven techniques can be applied which need only the process data to establish FDD systems. This paper presents application of subspace aided system identification method and robust residual evaluation using the process data directly, to detect actuator faults occuring in synchronous generators.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
发电机鲁棒故障检测的数据驱动技术
同步发电机的保护是一个非常具有挑战性的问题,因为它同时在三个不同的侧面连接系统;原动机、电网和直流励磁源。发电机模型是一个非常广泛和复杂的模型,基于模型的故障检测技术很难实现。为此,数据驱动的技术可以被应用,它只需要过程数据来建立FDD系统。本文将子空间辅助系统辨识方法和直接利用过程数据的鲁棒残差评估应用于同步发电机执行器故障的检测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On robust residual generation for fault detection in linear uncertain time delay systems Linearization approach for anti-windup synthesis and implementation for DC motor speed control Robust fault diagnosis of power grid network system Stability enhancement in smart grid by using superconducting fault current limiter Power system stability enhancement over a network with random delays
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1