A CubeSat-payload radiation-reliability assurance case using goal structuring notation

R. Austin, N. Mahadevan, B. Sierawski, G. Karsai, A. Witulski, John W. Evans
{"title":"A CubeSat-payload radiation-reliability assurance case using goal structuring notation","authors":"R. Austin, N. Mahadevan, B. Sierawski, G. Karsai, A. Witulski, John W. Evans","doi":"10.1109/RAM.2017.7889672","DOIUrl":null,"url":null,"abstract":"CubeSats have become an attractive platform for universities, industry, and government space missions because they are cheaper and quicker to develop than full-scale satellites. One way CubeSats keep costs low is by using commercial off-the-shelf parts (COTS) instead of space-qualified parts. Space-qualified parts are often costlier, larger, and consume more power than their commercial counterparts precluding their use within the CubeSat form-factor. Given typical power budgets, monetary budgets, and timelines for CubeSat missions, conventional radiation hardness assurance, like the use of space-qualified parts and radiation testing campaigns of COTS parts, is not practical. Instead, a system-level approach to radiation effects mitigation is needed. In this paper an assurance case for a system-level approach to mitigate radiation effects of a CubeSat science experiment is expressed using Goal Structuring Notation (GSN), a graphical argument standard. The case specifically looks at three main mitigation strategies for the radiation environment: total ionizing dose (TID) screening of parts, detection and recovery from single-event latch-ups (SEL) and single-event functional interrupts (SEFI). The graphical assurance case presented makes a qualitative argument for the radiation reliability of the CubeSat experiment using part and system-level mitigation strategies.","PeriodicalId":138871,"journal":{"name":"2017 Annual Reliability and Maintainability Symposium (RAMS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Annual Reliability and Maintainability Symposium (RAMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RAM.2017.7889672","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

CubeSats have become an attractive platform for universities, industry, and government space missions because they are cheaper and quicker to develop than full-scale satellites. One way CubeSats keep costs low is by using commercial off-the-shelf parts (COTS) instead of space-qualified parts. Space-qualified parts are often costlier, larger, and consume more power than their commercial counterparts precluding their use within the CubeSat form-factor. Given typical power budgets, monetary budgets, and timelines for CubeSat missions, conventional radiation hardness assurance, like the use of space-qualified parts and radiation testing campaigns of COTS parts, is not practical. Instead, a system-level approach to radiation effects mitigation is needed. In this paper an assurance case for a system-level approach to mitigate radiation effects of a CubeSat science experiment is expressed using Goal Structuring Notation (GSN), a graphical argument standard. The case specifically looks at three main mitigation strategies for the radiation environment: total ionizing dose (TID) screening of parts, detection and recovery from single-event latch-ups (SEL) and single-event functional interrupts (SEFI). The graphical assurance case presented makes a qualitative argument for the radiation reliability of the CubeSat experiment using part and system-level mitigation strategies.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用目标结构符号的立方体卫星有效载荷辐射可靠性保证案例
立方体卫星已经成为大学、工业和政府太空任务的一个有吸引力的平台,因为它们比全尺寸卫星更便宜,开发速度更快。立方体卫星保持低成本的一种方法是使用商用现货零件(COTS),而不是太空合格的零件。符合太空条件的部件通常比商用部件更贵、更大、消耗更多的能量,因此无法在CubeSat的外形中使用。考虑到立方体卫星任务的典型功率预算、货币预算和时间表,传统的辐射硬度保证,如使用符合空间要求的部件和COTS部件的辐射测试活动,是不现实的。相反,需要一种系统级的办法来减轻辐射影响。本文利用目标结构符号(GSN)这一图形化论证标准,对立方体卫星科学实验系统级辐射效应缓解方法的保证案例进行了描述。本案例特别研究了辐射环境的三种主要缓解策略:部件的总电离剂量(TID)筛选、单事件闭锁(SEL)的检测和恢复以及单事件功能中断(SEFI)。所提出的图解保证案例采用部分级和系统级减缓策略对立方体卫星实验的辐射可靠性进行了定性论证。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Reliability study on high-k bi-layer dielectrics Contracting for system availability under fleet expansion: Redundancy allocation or spares inventory? Risk modeling of variable probability external initiating events Human reliability assessments: Using the past (Shuttle) to predict the future (Orion) Uniform analysis of fault trees through model transformations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1