Parallel Branch-and-Bound using private IVM-based work stealing on Xeon Phi MIC coprocessor

N. Melab, Rudi Leroy, M. Mezmaz, D. Tuyttens
{"title":"Parallel Branch-and-Bound using private IVM-based work stealing on Xeon Phi MIC coprocessor","authors":"N. Melab, Rudi Leroy, M. Mezmaz, D. Tuyttens","doi":"10.1109/HPCSim.2015.7237067","DOIUrl":null,"url":null,"abstract":"Many combinatorial optimization problems are modeled in practice as permutation-based ones. We have recently proposed a new data structure called IVM dedicated to those problems. IVM is memory efficient in terms of size and management time for solving large permutation problems using Branch-and-Bound (B&B) algorithm. We believe that those memory properties make IVM well-suited for Many Integrated Cores (MIC) architecture. This paper deals with the parallel design and implementation of the B&B algorithm on MIC architectures using private IVM-based work stealing. The proposed approach has been extensively experimented on an Intel Xeon Phi 5110P using several instances of the Flow-Shop scheduling permutation problem. The reported results show that the IVM-based work stealing approach is about 10 times faster than the linked-list traditionally used for parallel B&B.","PeriodicalId":134009,"journal":{"name":"2015 International Conference on High Performance Computing & Simulation (HPCS)","volume":"42 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on High Performance Computing & Simulation (HPCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPCSim.2015.7237067","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Many combinatorial optimization problems are modeled in practice as permutation-based ones. We have recently proposed a new data structure called IVM dedicated to those problems. IVM is memory efficient in terms of size and management time for solving large permutation problems using Branch-and-Bound (B&B) algorithm. We believe that those memory properties make IVM well-suited for Many Integrated Cores (MIC) architecture. This paper deals with the parallel design and implementation of the B&B algorithm on MIC architectures using private IVM-based work stealing. The proposed approach has been extensively experimented on an Intel Xeon Phi 5110P using several instances of the Flow-Shop scheduling permutation problem. The reported results show that the IVM-based work stealing approach is about 10 times faster than the linked-list traditionally used for parallel B&B.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在Xeon Phi MIC协处理器上使用基于私有ivm的并行分支绑定工作窃取
在实践中,许多组合优化问题都是基于排列的组合优化问题。我们最近提出了一种名为IVM的新数据结构,专门用于解决这些问题。对于使用Branch-and-Bound (B&B)算法解决大型排列问题,IVM在大小和管理时间方面具有内存效率。我们相信这些内存属性使IVM非常适合多集成核心(MIC)架构。本文研究了基于私有ivm的工作窃取在MIC架构上并行设计和实现B&B算法。所提出的方法已经在Intel Xeon Phi 5110P上进行了广泛的实验,使用了几个Flow-Shop调度排列问题的实例。报告的结果表明,基于ivm的工作窃取方法比传统上用于并行民宿的链表方法快10倍左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Transient performance evaluation of cloud computing applications and dynamic resource control in large-scale distributed systems A security framework for population-scale genomics analysis Deep learning with shallow architecture for image classification A new reality requiers new ecosystems Investigation of DVFS based dynamic reliability management for chip multiprocessors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1