{"title":"Study on fault diagnosis of ultra-low-speed rolling bearings based on full vector sound spectrogram","authors":"Yuanling Chen, Yaguang Jin, Qiang Wan, Yuan Liu","doi":"10.1784/insi.2023.65.4.209","DOIUrl":null,"url":null,"abstract":"By exploring the mapping relationship between the multi-directional data and fault characteristics of bearings, a time-frequency analysis method for considering the multi-directional acoustic emission (AE) data of bearings is proposed. Firstly, using the full vector spectrum (FVS) theory,\n the full vector sound spectrogram of the dual-channel AE signal of a bearing is extracted to enhance the representation of the fault state using time-frequency characteristics. Then, the obtained full vector sound spectrogram is transformed into a specific size as the input feature map and\n a convolutional neural network (CNN) classifier model is established. Next, the Softmax classifier is used to classify the bearing faults in order to realise the intelligent fault diagnosis of an ultra-low-speed rolling bearing. The comparison of the different models shows that the average\n recognition accuracy using the full vector sound spectrogram CNN model can reach 95.61%, which is better than the other three methods. The feature extraction using the full vector sound spectrogram feature analysis method has a high degree of recognition for bearing faults in an ultra-low-speed\n state and can provide high accuracy and stability under noisy conditions.","PeriodicalId":344397,"journal":{"name":"Insight - Non-Destructive Testing and Condition Monitoring","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insight - Non-Destructive Testing and Condition Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1784/insi.2023.65.4.209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
By exploring the mapping relationship between the multi-directional data and fault characteristics of bearings, a time-frequency analysis method for considering the multi-directional acoustic emission (AE) data of bearings is proposed. Firstly, using the full vector spectrum (FVS) theory,
the full vector sound spectrogram of the dual-channel AE signal of a bearing is extracted to enhance the representation of the fault state using time-frequency characteristics. Then, the obtained full vector sound spectrogram is transformed into a specific size as the input feature map and
a convolutional neural network (CNN) classifier model is established. Next, the Softmax classifier is used to classify the bearing faults in order to realise the intelligent fault diagnosis of an ultra-low-speed rolling bearing. The comparison of the different models shows that the average
recognition accuracy using the full vector sound spectrogram CNN model can reach 95.61%, which is better than the other three methods. The feature extraction using the full vector sound spectrogram feature analysis method has a high degree of recognition for bearing faults in an ultra-low-speed
state and can provide high accuracy and stability under noisy conditions.