Performance Evaluation of Pre-Trained CNN Models for Visual Saliency Prediction

Bashir Ghariba, M. Shehata, Peter F. McGuire
{"title":"Performance Evaluation of Pre-Trained CNN Models for Visual Saliency Prediction","authors":"Bashir Ghariba, M. Shehata, Peter F. McGuire","doi":"10.1109/CCECE47787.2020.9255692","DOIUrl":null,"url":null,"abstract":"Human Visual System (HVS) has the ability to focus on specific parts of the scene, rather than the whole scene. This phenomenon is one of the most active research topics in the computer vision and neuroscience fields. Recently, deep learning models have been used for visual saliency prediction. In this paper, we investigate the performance of five state-of-the-art deep neural networks (VGG-16, ResNet-50, Xception, InceptionResNet-v2, and MobileNet-v2) for the task of visual saliency prediction. In this paper, we train five deep learning models over the SALICON dataset and then use the trained models to predict visual saliency maps using four standard datasets, namely: TORONTO, MIT300, MIT1003, and DUT-OMRON. The results indicate that the ResNet-50 model outperforms the other four and provides a visual saliency map that is very close to human performance.","PeriodicalId":296506,"journal":{"name":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","volume":"76 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCECE47787.2020.9255692","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Human Visual System (HVS) has the ability to focus on specific parts of the scene, rather than the whole scene. This phenomenon is one of the most active research topics in the computer vision and neuroscience fields. Recently, deep learning models have been used for visual saliency prediction. In this paper, we investigate the performance of five state-of-the-art deep neural networks (VGG-16, ResNet-50, Xception, InceptionResNet-v2, and MobileNet-v2) for the task of visual saliency prediction. In this paper, we train five deep learning models over the SALICON dataset and then use the trained models to predict visual saliency maps using four standard datasets, namely: TORONTO, MIT300, MIT1003, and DUT-OMRON. The results indicate that the ResNet-50 model outperforms the other four and provides a visual saliency map that is very close to human performance.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预训练CNN模型在视觉显著性预测中的性能评价
人类视觉系统(HVS)能够专注于场景的特定部分,而不是整个场景。这种现象是计算机视觉和神经科学领域最活跃的研究课题之一。最近,深度学习模型被用于视觉显著性预测。在本文中,我们研究了五个最先进的深度神经网络(VGG-16, ResNet-50, Xception, InceptionResNet-v2和MobileNet-v2)在视觉显著性预测任务中的性能。在本文中,我们在SALICON数据集上训练了五个深度学习模型,然后使用训练好的模型来预测使用四个标准数据集的视觉显著性地图,即:TORONTO, MIT300, MIT1003和DUT-OMRON。结果表明,ResNet-50模型优于其他四种模型,并提供了非常接近人类表现的视觉显著性图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Tracking Control of Force, Position, and Contour for an Excavator with Co-simulation Dual-Modality Cardiac Data Real-Time Rendering and Synchronization in Web Browsers FPGA-Based Evaluation and Implementation of an Automotive RADAR Signal Processing System using High-Level Synthesis A New Capacitive MEMS Flow Sensor for Industrial Gas Transport Monitoring Applications Voltage Stability Constrained Low-Carbon Generation & Transmission Expansion Planning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1