Yasmina Souley Dossso, Amente Bekele, Shermeen Nizami, C. Aubertin, K. Greenwood, J. Harrold, J. Green
{"title":"Segmentation of Patient Images in the Neonatal Intensive Care Unit","authors":"Yasmina Souley Dossso, Amente Bekele, Shermeen Nizami, C. Aubertin, K. Greenwood, J. Harrold, J. Green","doi":"10.1109/LSC.2018.8572169","DOIUrl":null,"url":null,"abstract":"Detection and segmentation of people within a scene has been primarily applied to indoor imagery for surveillance systems and outdoor scenes for pedestrian detection. This paper proposes to leverage a similar semantic segmentation model for segmenting patients in the neonatal intensive care unit (NICU) during video-based monitoring. This will serve as part of a noncontact, non-invasive and unobtrusive system to monitor neonates by acquiring a relevant region-of-interest from overhead RGB-D video. This paper examines situations typical of the NICU environment to ensure generalization of the solution to all patient scenarios. Transfer learning is applied to a pre-trained convolutional neural network on three different patients. Promising results are observed when the model is tested on a new patient. Final testing accuracy of 93% demonstrates the potential of such algorithm to automatically determine a suitable region-of-interest for video-based patient monitoring.","PeriodicalId":254835,"journal":{"name":"2018 IEEE Life Sciences Conference (LSC)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Life Sciences Conference (LSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSC.2018.8572169","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Detection and segmentation of people within a scene has been primarily applied to indoor imagery for surveillance systems and outdoor scenes for pedestrian detection. This paper proposes to leverage a similar semantic segmentation model for segmenting patients in the neonatal intensive care unit (NICU) during video-based monitoring. This will serve as part of a noncontact, non-invasive and unobtrusive system to monitor neonates by acquiring a relevant region-of-interest from overhead RGB-D video. This paper examines situations typical of the NICU environment to ensure generalization of the solution to all patient scenarios. Transfer learning is applied to a pre-trained convolutional neural network on three different patients. Promising results are observed when the model is tested on a new patient. Final testing accuracy of 93% demonstrates the potential of such algorithm to automatically determine a suitable region-of-interest for video-based patient monitoring.