{"title":"On the Accuracy of Near-Optimal GPU-Based Path Planning for UAVs","authors":"D. Palossi, A. Marongiu, L. Benini","doi":"10.1145/3078659.3079072","DOIUrl":null,"url":null,"abstract":"Path planning is one of the key functional blocks for any autonomous aerial vehicle (UAV). The goal of a path planner module is to constantly update the route of the vehicle based on information sensed in real-time. Given the high computational requirements of this task, heterogeneous many-cores are appealing candidates for its execution. Approximate path computation has proven a promising approach to reduce total execution time, at the cost of a slight loss in accuracy. In this work we study performance and accuracy of state-of-the-art, near-optimal parallel path planning in combination with program transformations aimed at ensuring efficient use of embedded GPU resources. We propose a profile-based algorithmic variant which boosts GPU execution by up to ≈ 7x, while maintaining the accuracy loss below 5%.","PeriodicalId":240210,"journal":{"name":"Proceedings of the 20th International Workshop on Software and Compilers for Embedded Systems","volume":"355 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 20th International Workshop on Software and Compilers for Embedded Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3078659.3079072","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Path planning is one of the key functional blocks for any autonomous aerial vehicle (UAV). The goal of a path planner module is to constantly update the route of the vehicle based on information sensed in real-time. Given the high computational requirements of this task, heterogeneous many-cores are appealing candidates for its execution. Approximate path computation has proven a promising approach to reduce total execution time, at the cost of a slight loss in accuracy. In this work we study performance and accuracy of state-of-the-art, near-optimal parallel path planning in combination with program transformations aimed at ensuring efficient use of embedded GPU resources. We propose a profile-based algorithmic variant which boosts GPU execution by up to ≈ 7x, while maintaining the accuracy loss below 5%.