Run-Time Machine Learning for HEVC/H.265 Fast Partitioning Decision

S. Momcilovic, N. Roma, L. Sousa, I. Milentijevic
{"title":"Run-Time Machine Learning for HEVC/H.265 Fast Partitioning Decision","authors":"S. Momcilovic, N. Roma, L. Sousa, I. Milentijevic","doi":"10.1109/ISM.2015.70","DOIUrl":null,"url":null,"abstract":"A novel fast Coding Tree Unit partitioning for HEVC/H.265 encoder is proposed in this paper. This method relies on run-time trained neural networks for fast Coding Units splitting decisions. Contrasting to state-of-the-art solutions, this method does not require any pre-training and provides a high adaptivity to the dynamic changes in video contents. By an efficient sampling strategy and a multi-thread implementation, the presented technique successfully mitigates the computational overhead inherent to the training process on both the overall processing performance and on the initial encoding delay. The experiments show that the proposed method successfully reduces the HEVC/H.265 encoding time for up to 65% with negligible rate-distortion penalties.","PeriodicalId":250353,"journal":{"name":"2015 IEEE International Symposium on Multimedia (ISM)","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Symposium on Multimedia (ISM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISM.2015.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

A novel fast Coding Tree Unit partitioning for HEVC/H.265 encoder is proposed in this paper. This method relies on run-time trained neural networks for fast Coding Units splitting decisions. Contrasting to state-of-the-art solutions, this method does not require any pre-training and provides a high adaptivity to the dynamic changes in video contents. By an efficient sampling strategy and a multi-thread implementation, the presented technique successfully mitigates the computational overhead inherent to the training process on both the overall processing performance and on the initial encoding delay. The experiments show that the proposed method successfully reduces the HEVC/H.265 encoding time for up to 65% with negligible rate-distortion penalties.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运行时机器学习HEVC/H.265快速分区决策
一种新的HEVC/H编码树单元快速划分方法。本文提出了265编码器。该方法依靠运行时训练的神经网络实现快速的编码单元分割决策。与最先进的解决方案相比,该方法不需要任何预训练,并且对视频内容的动态变化具有很高的适应性。通过有效的采样策略和多线程实现,该技术成功地降低了训练过程中对整体处理性能和初始编码延迟的固有计算开销。实验表明,该方法有效地降低了HEVC/H。265编码时间高达65%与可忽略不计的率失真处罚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Characterization of the HEVC Coding Efficiency Advance Using 20 Scenes, ITU-T Rec. P.913 Compliant Subjective Methods, VQM, and PSNR Modelling Video Rate Evolution in Adaptive Bitrate Selection SDN Based QoE Optimization for HTTP-Based Adaptive Video Streaming Evaluation of Feature Detection in HDR Based Imaging Under Changes in Illumination Conditions Collaborative Rehabilitation Support System: A Comprehensive Solution for Everyday Rehab
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1