Using Corner Feature Correspondences to Rank Word Images by Similarity

Jamie L. Rothfeder, Shaolei Feng, T. Rath
{"title":"Using Corner Feature Correspondences to Rank Word Images by Similarity","authors":"Jamie L. Rothfeder, Shaolei Feng, T. Rath","doi":"10.1109/CVPRW.2003.10021","DOIUrl":null,"url":null,"abstract":"Libraries contain enormous amounts of handwritten historical documents which cannot be made available on-line because they do not have a searchable index. The wordspotting idea has previously been proposed as a solution to creating indexes for such documents and collections by matching word images. In this paper we present an algorithm which compares whole word-images based on their appearance. This algorithm recovers correspondences of points of interest in two images, and then uses these correspondences to construct a similarity measure. This similarity measure can then be used to rank word-images in order of their closeness to a querying image. We achieved an average precision of 62.57% on a set of 2372 images of reasonable quality and an average precision of 15.49% on a set of 3262 images from documents of poor quality that are even hard to read for humans.","PeriodicalId":121249,"journal":{"name":"2003 Conference on Computer Vision and Pattern Recognition Workshop","volume":"369 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"93","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2003 Conference on Computer Vision and Pattern Recognition Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPRW.2003.10021","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 93

Abstract

Libraries contain enormous amounts of handwritten historical documents which cannot be made available on-line because they do not have a searchable index. The wordspotting idea has previously been proposed as a solution to creating indexes for such documents and collections by matching word images. In this paper we present an algorithm which compares whole word-images based on their appearance. This algorithm recovers correspondences of points of interest in two images, and then uses these correspondences to construct a similarity measure. This similarity measure can then be used to rank word-images in order of their closeness to a querying image. We achieved an average precision of 62.57% on a set of 2372 images of reasonable quality and an average precision of 15.49% on a set of 3262 images from documents of poor quality that are even hard to read for humans.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用角点特征对应对词图像进行相似度排序
图书馆中有大量手写的历史文献,由于没有可搜索的索引,这些文献不能在网上提供。单词点出的想法以前曾被提出作为一种解决方案,通过匹配单词图像为此类文档和集合创建索引。本文提出了一种基于外观的全字图像比较算法。该算法恢复两幅图像中感兴趣点的对应关系,然后利用这些对应关系构建相似度度量。然后,这种相似度度量可以用来对单词图像按照它们与查询图像的接近程度进行排序。我们在一组2372张质量合理的图像上实现了62.57%的平均精度,在一组3262张质量较差的图像上实现了15.49%的平均精度,这些图像甚至很难被人类阅读。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Factorization Approach for Activity Recognition Optical flow estimation in omnidirectional images using wavelet approach Reckless motion estimation from omnidirectional image and inertial measurements Statistical Error Propagation in 3D Modeling From Monocular Video Learning and Perceptual Interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1