Clustering based Segmentation of MR Images for the Delineation and Monitoring of Multiple Sclerosis Progression

Styliani P. Zelilidou, E. Tripoliti, Kostas I. Vlachos, S. Konitsiotis, D. Fotiadis
{"title":"Clustering based Segmentation of MR Images for the Delineation and Monitoring of Multiple Sclerosis Progression","authors":"Styliani P. Zelilidou, E. Tripoliti, Kostas I. Vlachos, S. Konitsiotis, D. Fotiadis","doi":"10.1109/BIBE52308.2021.9635369","DOIUrl":null,"url":null,"abstract":"This paper presents a clustering-based method for the detection of Multiple Sclerosis (MS) lesions, by including anatomical information, brain geometry and lesion features, while volume quantification is performed. The proposed method utilizes Fluid Attenuated Inversion Recovery (FLAIR) images for the delineation of the plaques and brain atrophy estimation. The methodology includes five steps: (i) image preprocessing, (ii) image segmentation utilizing the K-means clustering algorithm, (iii) post processing for elimination of false positives, (iv) delineation and visualization of the MS lesions, and (v) brain atrophy estimation. It is implemented in two different datasets; (a) a dataset of 3D FLAIR MR Images, acquired in 30 MS patients, and (b) a dataset of 15 FLAIR MR Images, provided by the MICCAI Challenge 2016. A sensitivity 73.80%, and 71.52% was achieved for the two datasets, respectively. Brain atrophy was determined only on the first dataset, since follow up scans are available.","PeriodicalId":343724,"journal":{"name":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","volume":"380 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE52308.2021.9635369","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a clustering-based method for the detection of Multiple Sclerosis (MS) lesions, by including anatomical information, brain geometry and lesion features, while volume quantification is performed. The proposed method utilizes Fluid Attenuated Inversion Recovery (FLAIR) images for the delineation of the plaques and brain atrophy estimation. The methodology includes five steps: (i) image preprocessing, (ii) image segmentation utilizing the K-means clustering algorithm, (iii) post processing for elimination of false positives, (iv) delineation and visualization of the MS lesions, and (v) brain atrophy estimation. It is implemented in two different datasets; (a) a dataset of 3D FLAIR MR Images, acquired in 30 MS patients, and (b) a dataset of 15 FLAIR MR Images, provided by the MICCAI Challenge 2016. A sensitivity 73.80%, and 71.52% was achieved for the two datasets, respectively. Brain atrophy was determined only on the first dataset, since follow up scans are available.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于聚类分割的磁共振图像用于多发性硬化症进展的描绘和监测
本文提出了一种基于聚类的多发性硬化症(MS)病变检测方法,该方法包括解剖学信息、脑几何形状和病变特征,同时进行体积量化。该方法利用流体衰减反演恢复(FLAIR)图像进行斑块的描绘和脑萎缩的估计。该方法包括五个步骤:(i)图像预处理,(ii)使用K-means聚类算法进行图像分割,(iii)消除假阳性的后处理,(iv) MS病变的描绘和可视化,以及(v)脑萎缩估计。它在两个不同的数据集中实现;(a) 30名MS患者的3D FLAIR MR图像数据集,(b)由MICCAI Challenge 2016提供的15张FLAIR MR图像数据集。两个数据集的灵敏度分别为73.80%和71.52%。脑萎缩仅在第一个数据集上确定,因为后续扫描是可用的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Structural, antimicrobial, and molecular docking study of 3-(1-(4-hydroxyphenyl)amino) ethylidene)chroman-2,4-dione and its corresponding Pd complex Multiple-Activation Parallel Convolution Network in Combination with t-SNE for the Classification of Mild Cognitive Impairment Analyzing the Impact of Resampling Approaches on Chest X-Ray Images for COVID-19 Identification in a Local Hierarchical Classification Scenario Analysis of knee joint forces in different types of jumps of top futsal players at the beginning and at the end of the preparation period Design and evaluation of a noninvasive tongue-computer interface for individuals with severe disabilities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1