A 181µW Real-Time 3-D Hand Gesture Recognition System based on Bi-directional Convolution and Computing-Efficient Feature Clustering

Yuncheng Lu, Zehao Li, Yuzong Chen, T. T. Kim
{"title":"A 181µW Real-Time 3-D Hand Gesture Recognition System based on Bi-directional Convolution and Computing-Efficient Feature Clustering","authors":"Yuncheng Lu, Zehao Li, Yuzong Chen, T. T. Kim","doi":"10.1109/CICC53496.2022.9772866","DOIUrl":null,"url":null,"abstract":"Vision-based hand gesture recognition (HGR) system, as an intuitive and portable approach for human-computer interaction (HCI), has been widely deployed on smart edge devices. While the prior endeavors remain different limitations to achieve a balance between power consumption and stability of the system. The HGR processors based on deep neural networks [1]–[3] achieved high recognition accuracy at the cost of significant power consumption. In contrast, the emerging energy-efficient HGR systems [4]–[5] based on ultra-compact customized algorithms suffer from performance degradation as the disturbing factors in the background increase.","PeriodicalId":415990,"journal":{"name":"2022 IEEE Custom Integrated Circuits Conference (CICC)","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE Custom Integrated Circuits Conference (CICC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICC53496.2022.9772866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Vision-based hand gesture recognition (HGR) system, as an intuitive and portable approach for human-computer interaction (HCI), has been widely deployed on smart edge devices. While the prior endeavors remain different limitations to achieve a balance between power consumption and stability of the system. The HGR processors based on deep neural networks [1]–[3] achieved high recognition accuracy at the cost of significant power consumption. In contrast, the emerging energy-efficient HGR systems [4]–[5] based on ultra-compact customized algorithms suffer from performance degradation as the disturbing factors in the background increase.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于双向卷积和高效特征聚类的181 μ W实时三维手势识别系统
基于视觉的手势识别系统作为一种直观、便携的人机交互方式,在智能边缘设备上得到了广泛的应用。而以往的努力仍然存在不同的局限性,以实现功耗和系统的稳定性之间的平衡。基于深度神经网络的HGR处理器[1]-[3]以较高的功耗为代价实现了较高的识别精度。相比之下,新兴的基于超紧凑定制算法的高效节能HGR系统[4]-[5]随着背景干扰因素的增加,性能会下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
All Rivers Flow to the Sea: A High Power Density Wireless Power Receiver with Split-Dual-Path Rectification and Hybrid-Quad-Path Step-Down Conversion A 400-to-12 V Fully Integrated Switched-Capacitor DC-DC Converter Achieving 119 mW/mm2 at 63.6 % Efficiency A 0.14nJ/b 200Mb/s Quasi-Balanced FSK Transceiver with Closed-Loop Modulation and Sideband Energy Detection A 2GHz voltage mode power scalable RF-Front-End with 2.5dB-NF and 0.5dBm-1dBCP High-Speed Digital-to-Analog Converter Design Towards High Dynamic Range
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1