{"title":"Semi-Supervised Standardized Detection of Periodic Signals with Application to Exoplanet Detection","authors":"S. Sulis, D. Mary, L. Bigot","doi":"10.1109/icassp43922.2022.9746081","DOIUrl":null,"url":null,"abstract":"We propose a numerical methodology for detecting periodicities in unknown colored noise and for evaluating the ‘significance levels’ (p-values) of the test statistics. The procedure assumes and leverages the existence of a set of time series obtained under the null hypothesis (a null training sample, NTS) and possibly complementary side information. The test statistic is computed from a standardized periodogram, which is a pointwise division of the periodogram of the series under test to an averaged periodogram obtained from the NTS. The procedure provides accurate p-values estimation through a dedicated Monte Carlo procedure. While the methodology is general, our application is here exoplanet detection. The proposed methods are benchmarked on astrophysical data.","PeriodicalId":272439,"journal":{"name":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"413 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icassp43922.2022.9746081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We propose a numerical methodology for detecting periodicities in unknown colored noise and for evaluating the ‘significance levels’ (p-values) of the test statistics. The procedure assumes and leverages the existence of a set of time series obtained under the null hypothesis (a null training sample, NTS) and possibly complementary side information. The test statistic is computed from a standardized periodogram, which is a pointwise division of the periodogram of the series under test to an averaged periodogram obtained from the NTS. The procedure provides accurate p-values estimation through a dedicated Monte Carlo procedure. While the methodology is general, our application is here exoplanet detection. The proposed methods are benchmarked on astrophysical data.