Spatially fine-grained air quality prediction based on DBU-LSTM

Liang Ge, Aoli Zhou, Hang Li, Junling Liu
{"title":"Spatially fine-grained air quality prediction based on DBU-LSTM","authors":"Liang Ge, Aoli Zhou, Hang Li, Junling Liu","doi":"10.1145/3310273.3322829","DOIUrl":null,"url":null,"abstract":"This paper proposes a general approach to predict the spatially fine-grained air quality. The model is based on deep bidirectional and unidirectional long short-term memory (DBU-LSTM) neural network, which can capture bidirectional temporal dependencies and spatial correlations from time series data. Urban heterogeneous data such as point of interest (POI) and road network are used to evaluate the similarities between urban regions. The tensor decomposition method is used to complete the missing historical air quality data of monitoring stations. We evaluate our approach on real data sources obtained in Beijing, and the experimental results show its advantages over baseline methods.","PeriodicalId":431860,"journal":{"name":"Proceedings of the 16th ACM International Conference on Computing Frontiers","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310273.3322829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper proposes a general approach to predict the spatially fine-grained air quality. The model is based on deep bidirectional and unidirectional long short-term memory (DBU-LSTM) neural network, which can capture bidirectional temporal dependencies and spatial correlations from time series data. Urban heterogeneous data such as point of interest (POI) and road network are used to evaluate the similarities between urban regions. The tensor decomposition method is used to complete the missing historical air quality data of monitoring stations. We evaluate our approach on real data sources obtained in Beijing, and the experimental results show its advantages over baseline methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于DBU-LSTM的空间细粒度空气质量预测
本文提出了一种预测空间细粒空气质量的通用方法。该模型基于深度双向和单向长短期记忆(DBU-LSTM)神经网络,可以捕获时间序列数据的双向时间依赖性和空间相关性。城市异构数据,如兴趣点(POI)和道路网络,用于评估城市区域之间的相似性。利用张量分解法补全监测站缺失的历史空气质量数据。我们在北京获得的真实数据源上对该方法进行了评估,实验结果表明该方法优于基线方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extending classical processors to support future large scale quantum accelerators Analysing the tor web with high performance graph algorithms The FitOptiVis ECSEL project: highly efficient distributed embedded image/video processing in cyber-physical systems The german informatics society's new ethical guidelines: POSTER Go green radio astronomy: Approximate Computing Perspective: Opportunities and Challenges: POSTER
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1