A sub-10mW real-time implementation for EMG hand gesture recognition based on a multi-core biomedical SoC

S. Benatti, G. Rovere, Jonathan Bosser, Fabio Montagna, Elisabetta Farella, Horian Glaser, Philipp Schönle, T. Burger, S. Fateh, Qiuting Huang, L. Benini
{"title":"A sub-10mW real-time implementation for EMG hand gesture recognition based on a multi-core biomedical SoC","authors":"S. Benatti, G. Rovere, Jonathan Bosser, Fabio Montagna, Elisabetta Farella, Horian Glaser, Philipp Schönle, T. Burger, S. Fateh, Qiuting Huang, L. Benini","doi":"10.1109/IWASI.2017.7974234","DOIUrl":null,"url":null,"abstract":"Real-time biosignal classification in power-constrained embedded applications is a key step in designing portable e-healtb devices requiring hardware integration along with concurrent signal processing. This paper presents an application based on a novel biomedical System-On-Chip (SoC) for signal acquisition and processing combining a homogeneous multi-core cluster with a versatile bio-potential front-end. The presented implementation acquires raw EMG signals from 3 passive gel-electrodes and classifies 3 hand gestures using a Support Vector Machine (SVM) pattern recognition algorithm. Performance matches state-of-the-art high-end systems both in terms of recognition accuracy (>S5%) and of real-time execution (gesture recognition time 300 ms). The power consumption of the employed biomedical SoC is below 10 mW, outperforming implementations on conunercial MCUs by a factor of 10, ensuring a battery life of up to 160 hours with a common Li-ion 1600 mAh battery.","PeriodicalId":332606,"journal":{"name":"2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI)","volume":"299 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWASI.2017.7974234","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

Abstract

Real-time biosignal classification in power-constrained embedded applications is a key step in designing portable e-healtb devices requiring hardware integration along with concurrent signal processing. This paper presents an application based on a novel biomedical System-On-Chip (SoC) for signal acquisition and processing combining a homogeneous multi-core cluster with a versatile bio-potential front-end. The presented implementation acquires raw EMG signals from 3 passive gel-electrodes and classifies 3 hand gestures using a Support Vector Machine (SVM) pattern recognition algorithm. Performance matches state-of-the-art high-end systems both in terms of recognition accuracy (>S5%) and of real-time execution (gesture recognition time 300 ms). The power consumption of the employed biomedical SoC is below 10 mW, outperforming implementations on conunercial MCUs by a factor of 10, ensuring a battery life of up to 160 hours with a common Li-ion 1600 mAh battery.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多核生物医学SoC的肌电信号手势识别实时实现
在功率受限的嵌入式应用中,实时生物信号分类是设计需要硬件集成和并发信号处理的便携式电子健康设备的关键步骤。本文提出了一种基于新型生物医学片上系统(SoC)的信号采集和处理应用,该系统将同质多核集群与多功能生物电位前端相结合。该实现从3个无源凝胶电极获取原始肌电信号,并使用支持向量机(SVM)模式识别算法对3种手势进行分类。在识别精度(> 5%)和实时执行(手势识别时间300毫秒)方面,性能与最先进的高端系统相匹配。所采用的生物医学SoC的功耗低于10 mW,比商用mcu的实现性能高出10倍,确保使用普通锂离子1600毫安时电池的电池寿命长达160小时。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a multi-lead ECG wearable sensor system for biomedical applications Flexible pressure and proximity sensor surfaces manufactured with organic materials Activation of bottom-up and top-down auditory pathways by US sensors based interface Multiscale Granger causality analysis by à trous wavelet transform Autonomous vehicles: A playground for sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1