Human emotion recognition based on multi-channel EEG signals using LSTM neural network

P. Lu
{"title":"Human emotion recognition based on multi-channel EEG signals using LSTM neural network","authors":"P. Lu","doi":"10.1109/PHM2022-London52454.2022.00060","DOIUrl":null,"url":null,"abstract":"Electroencephalogram (EEG) signal is often used in emotion recognition tasks to classify human emotions. In this paper, we propose a new approach to learn the temporal features of EEG using long and short-term memory (LSTM), which is a type of Recurrent Neural network (RNN), especially suitable for solving the problem of long-term dependencies such as gradients vanishing and exploding. In addition, to enhance the interaction between EEG signals and to learn the non-linear characteristics between EEG electrodes, we use 1D-Convolution kernel to pre-process the input EEG data. To justify the capability of this method, we set the subject-independent experiments via adopting the leave-one-out experimental strategy on SEED dataset. The result of our experiments shows that this method can effectively capture the timing relationships in EEG signals with high classification accuracy around 93%.","PeriodicalId":269605,"journal":{"name":"2022 Prognostics and Health Management Conference (PHM-2022 London)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Prognostics and Health Management Conference (PHM-2022 London)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PHM2022-London52454.2022.00060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Electroencephalogram (EEG) signal is often used in emotion recognition tasks to classify human emotions. In this paper, we propose a new approach to learn the temporal features of EEG using long and short-term memory (LSTM), which is a type of Recurrent Neural network (RNN), especially suitable for solving the problem of long-term dependencies such as gradients vanishing and exploding. In addition, to enhance the interaction between EEG signals and to learn the non-linear characteristics between EEG electrodes, we use 1D-Convolution kernel to pre-process the input EEG data. To justify the capability of this method, we set the subject-independent experiments via adopting the leave-one-out experimental strategy on SEED dataset. The result of our experiments shows that this method can effectively capture the timing relationships in EEG signals with high classification accuracy around 93%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多通道脑电信号的LSTM神经网络人类情绪识别
脑电图(EEG)信号常用于情绪识别任务中对人类情绪进行分类。本文提出了一种利用长短期记忆(LSTM)学习脑电图时间特征的新方法,该方法是递归神经网络(RNN)的一种,特别适用于解决梯度消失和爆炸等长期依赖问题。此外,为了增强脑电信号之间的交互作用,学习脑电信号电极之间的非线性特征,我们使用1d -卷积核对输入的脑电信号进行预处理。为了验证该方法的能力,我们通过在SEED数据集上采用留一实验策略设置了与主题无关的实验。实验结果表明,该方法可以有效地捕获脑电信号中的时序关系,分类准确率在93%左右。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Defending Against Adversarial Attacks on Time- series with Selective Classification Fault diagnosis of fire control system based on genetic algorithm optimized BP neural network Monitoring and Mitigating Ionosphere threats in GNSS Space Environment Science A Relation Prediction Method for Industrial Knowledge Graph with Complex Relations Condition Monitoring of Wind Turbine Main Bearing Using SCADA Data and Informed by the Principle of Energy Conservation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1