F. Lafont, R. Ribeiro-Palau, Z. Han, A. Cresti, A. Cummings, S. Roche, V. Bouchiat, S. Ducourtieux, F. Schopfer, W. Poirier
{"title":"Dissipative quantum Hall effect in polycrystalline CVD graphene","authors":"F. Lafont, R. Ribeiro-Palau, Z. Han, A. Cresti, A. Cummings, S. Roche, V. Bouchiat, S. Ducourtieux, F. Schopfer, W. Poirier","doi":"10.1109/CPEM.2014.6898249","DOIUrl":null,"url":null,"abstract":"We report on a study of the quantum Hall effect in large area Hall bars made of polycrystalline graphene grown by chemical vapor deposition and then transferred on SiO2/Si substrate. The longitudinal conductivity σxx measured near Landau Level filling factors ±2, ±6 evidences a strong backscattering of carriers even at T=0.3 K and B=19 T. It results that the Hall resistance is not quantized at the metrological level. σxx increases (decreases) as a function of the temperature (magnetic induction) following unexpected power laws that are not compatible with usual backscattering mechanisms like variable range hopping or inter-Landau level activation. With the support of structural characterizations and numerical simulations, we discuss the role of line defects (wrinkles and grain boundaries) crossing the Hall bar which can short-circuit the counter-propagating edge states.","PeriodicalId":256575,"journal":{"name":"29th Conference on Precision Electromagnetic Measurements (CPEM 2014)","volume":"67 4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"29th Conference on Precision Electromagnetic Measurements (CPEM 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPEM.2014.6898249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We report on a study of the quantum Hall effect in large area Hall bars made of polycrystalline graphene grown by chemical vapor deposition and then transferred on SiO2/Si substrate. The longitudinal conductivity σxx measured near Landau Level filling factors ±2, ±6 evidences a strong backscattering of carriers even at T=0.3 K and B=19 T. It results that the Hall resistance is not quantized at the metrological level. σxx increases (decreases) as a function of the temperature (magnetic induction) following unexpected power laws that are not compatible with usual backscattering mechanisms like variable range hopping or inter-Landau level activation. With the support of structural characterizations and numerical simulations, we discuss the role of line defects (wrinkles and grain boundaries) crossing the Hall bar which can short-circuit the counter-propagating edge states.