Analyzing the Efficacy of Flexible Execution, Replanning, and Plan Optimization for a Planetary Lander

Daniel Wang, J. Russino, Connor Basich, S. Chien
{"title":"Analyzing the Efficacy of Flexible Execution, Replanning, and Plan Optimization for a Planetary Lander","authors":"Daniel Wang, J. Russino, Connor Basich, S. Chien","doi":"10.1609/icaps.v32i1.19838","DOIUrl":null,"url":null,"abstract":"Plan execution in unknown environments poses a number of challenges: uncertainty in domain modeling, stochasticity at execution time, and the presence of exogenous events. These challenges motivate an integrated approach to planning and execution that is able to respond intelligently to variation. We examine this problem in the context of the Europa Lander mission concept, and evaluate a planning and execution framework that responds to feedback and task failure using two techniques: flexible execution and replanning with plan optimization. We develop a theoretical framework to estimate gains from these techniques, and we compare these predictions to empirical results generated in simulation. These results indicate that an integrated approach to planning and execution leveraging flexible execution, replanning, and utility maximization shows significant promise for future tightly-constrained space missions that must address significant uncertainty.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"22 6S 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v32i1.19838","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Plan execution in unknown environments poses a number of challenges: uncertainty in domain modeling, stochasticity at execution time, and the presence of exogenous events. These challenges motivate an integrated approach to planning and execution that is able to respond intelligently to variation. We examine this problem in the context of the Europa Lander mission concept, and evaluate a planning and execution framework that responds to feedback and task failure using two techniques: flexible execution and replanning with plan optimization. We develop a theoretical framework to estimate gains from these techniques, and we compare these predictions to empirical results generated in simulation. These results indicate that an integrated approach to planning and execution leveraging flexible execution, replanning, and utility maximization shows significant promise for future tightly-constrained space missions that must address significant uncertainty.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
分析行星着陆器灵活执行、重新规划和计划优化的有效性
在未知环境中执行计划会带来许多挑战:领域建模的不确定性、执行时的随机性以及外生事件的存在。这些挑战激发了一种能够对变化做出智能响应的计划和执行的综合方法。我们在欧罗巴着陆器任务概念的背景下研究了这个问题,并评估了一个计划和执行框架,该框架使用两种技术来响应反馈和任务失败:灵活执行和重新规划与计划优化。我们开发了一个理论框架来估计这些技术的收益,并将这些预测与模拟中产生的经验结果进行比较。这些结果表明,利用灵活执行、重新规划和效用最大化的综合规划和执行方法,为必须解决重大不确定性的未来严格约束的空间任务显示了巨大的希望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast and Robust Resource-Constrained Scheduling with Graph Neural Networks Solving the Multi-Choice Two Dimensional Shelf Strip Packing Problem with Time Windows Generalizing Action Justification and Causal Links to Policies Exact Anytime Multi-Agent Path Finding Using Branch-and-Cut-and-Price and Large Neighborhood Search A Constraint Programming Solution to the Guillotine Rectangular Cutting Problem
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1