On-Line Data-Based Load Classification in Narrow-Track Vehicles

D. Isgro, G. Mantegazza, S. Formentin, Giulio Panzani, S. Savaresi
{"title":"On-Line Data-Based Load Classification in Narrow-Track Vehicles","authors":"D. Isgro, G. Mantegazza, S. Formentin, Giulio Panzani, S. Savaresi","doi":"10.1109/ITSC.2018.8569017","DOIUrl":null,"url":null,"abstract":"In automotive applications, the knowledge of the vehicle load is a crucial factor that can bring significant improvement on safety and performance, e.g. in ABS or semiactive suspensions control. In narrow-track vehicles, this aspect is even more important, considering that the mass variation - w.r.t to the vehicle one - is higher than in standard vehicles. The objective of this work is to present an on-line data-based mass classifier based on inertial sensors only. The effectiveness of the approach is assessed on experimental data taken from a real vehicle.","PeriodicalId":395239,"journal":{"name":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 21st International Conference on Intelligent Transportation Systems (ITSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITSC.2018.8569017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

In automotive applications, the knowledge of the vehicle load is a crucial factor that can bring significant improvement on safety and performance, e.g. in ABS or semiactive suspensions control. In narrow-track vehicles, this aspect is even more important, considering that the mass variation - w.r.t to the vehicle one - is higher than in standard vehicles. The objective of this work is to present an on-line data-based mass classifier based on inertial sensors only. The effectiveness of the approach is assessed on experimental data taken from a real vehicle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于在线数据的窄轨车辆载荷分类
在汽车应用中,了解车辆负载是一个至关重要的因素,可以显著提高安全性和性能,例如在ABS或半主动悬架控制中。在窄轨车辆中,这一点尤为重要,因为它的质量变化比标准车辆要大得多。本文的目的是提出一种仅基于惯性传感器的在线数据质量分类器。用一辆真实车辆的实验数据对该方法的有效性进行了评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of Small Satellites and Connected Vehicles for Large-Scale Traffic Monitoring in Road Network Applications of train routing selection methods for real-time railway traffic management To Merge Early or Late: Analysis of Traffic Flow and Energy Impact in a Reduced Lane Scenario Future Mobility Sensing: An Intelligent Mobility Data Collection and Visualization Platform Large Scale Performance Assessment of the Lighthill-Whitham-Richards Model on a Smart Motorway
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1