Video object matching based on SIFT algorithm

Xuelong Hu, Yingcheng Tang, Zheng-Ben Zhang
{"title":"Video object matching based on SIFT algorithm","authors":"Xuelong Hu, Yingcheng Tang, Zheng-Ben Zhang","doi":"10.1109/ICNNSP.2008.4590383","DOIUrl":null,"url":null,"abstract":"SIFT (scale invariant feature transform) is used to solve visual tracking problem, where the appearances of the tracked object and scene background change during tracking. The implementation of this algorithm has five major stages: scale-space extrema detection; keypoint localization; orientation assignment; keypoint descriptor; keypoint matching. From the beginning frame, object is selected as the template, its SIFT features are computed. Then in the following frames, the SIFT features are computed. Euclidean distance between the object's SIFT features and the frames' SIFT features can be used to compute the accurate position of the matched object. The experimental results on real video sequences demonstrate the effectiveness of this approach and show this algorithm is of higher robustness and real-time performance. It can solve the matching problem with translation, rotation and affine distortion between images. It plays an important role in video object tracking and video object retrieval.","PeriodicalId":250993,"journal":{"name":"2008 International Conference on Neural Networks and Signal Processing","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"51","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Conference on Neural Networks and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNNSP.2008.4590383","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 51

Abstract

SIFT (scale invariant feature transform) is used to solve visual tracking problem, where the appearances of the tracked object and scene background change during tracking. The implementation of this algorithm has five major stages: scale-space extrema detection; keypoint localization; orientation assignment; keypoint descriptor; keypoint matching. From the beginning frame, object is selected as the template, its SIFT features are computed. Then in the following frames, the SIFT features are computed. Euclidean distance between the object's SIFT features and the frames' SIFT features can be used to compute the accurate position of the matched object. The experimental results on real video sequences demonstrate the effectiveness of this approach and show this algorithm is of higher robustness and real-time performance. It can solve the matching problem with translation, rotation and affine distortion between images. It plays an important role in video object tracking and video object retrieval.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于SIFT算法的视频目标匹配
SIFT (scale invariant feature transform)用于解决视觉跟踪问题,在跟踪过程中被跟踪对象的外观和场景背景会发生变化。该算法的实现分为五个主要阶段:尺度空间极值检测;关键点定位;定向分配;关键点描述符;关键点匹配。从起始帧开始,选取目标作为模板,计算其SIFT特征。然后在接下来的帧中,计算SIFT特征。目标的SIFT特征与帧的SIFT特征之间的欧氏距离可以用来计算匹配目标的精确位置。在真实视频序列上的实验结果验证了该方法的有效性,表明该算法具有较高的鲁棒性和实时性。它可以解决图像间的平移、旋转和仿射畸变等匹配问题。它在视频目标跟踪和视频目标检索中起着重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On the architecture of H.264 to H.264 homogeneous transcoding platform The study of signal simulation based on the passive radar seeker A blind super-resolution framework considering the sensor PSF Hyper chaos synchronization shift keying (HCSSK) modulation and demodulation in wireless communications An “out of head” sound field enhancement system for headphone
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1