Feature Analysis of Electroencephalography in Patients with Depression

R. Nakamura, Y. Mitsukura
{"title":"Feature Analysis of Electroencephalography in Patients with Depression","authors":"R. Nakamura, Y. Mitsukura","doi":"10.1109/LSC.2018.8572043","DOIUrl":null,"url":null,"abstract":"Recently many people are suffering from mental illnesses like depression worldwide. Although they are ambiguous and have difficulties in grasping the states of patients, in fact they lower their quality of life. The total loss of economics, life and quality of life by depression is big enough that it cannot be ignored. It is important for the patients to recover from depression and also for the healthy controls not to become depression. So correct diagnosis and treatment are essential for the people. In actual clinical field, incorrectness of diagnosis is now regarded as issue. To construct an objective way of evaluation on depression, we set a goal of extraction of features in depressive electroencephalography (EEG). Unlike other studies in this field, this study has mainly two points of unique. Firstly, this feature analysis is using signal from just one channel located in frontal lobe (Fp1). Secondly, the acquisition of EEG was conducted during actual clinical inquiry or under similar situation. After the experiment, EEG of both depression patients and healthy controls were compared through two-sample t-test.","PeriodicalId":254835,"journal":{"name":"2018 IEEE Life Sciences Conference (LSC)","volume":"256 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Life Sciences Conference (LSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LSC.2018.8572043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Recently many people are suffering from mental illnesses like depression worldwide. Although they are ambiguous and have difficulties in grasping the states of patients, in fact they lower their quality of life. The total loss of economics, life and quality of life by depression is big enough that it cannot be ignored. It is important for the patients to recover from depression and also for the healthy controls not to become depression. So correct diagnosis and treatment are essential for the people. In actual clinical field, incorrectness of diagnosis is now regarded as issue. To construct an objective way of evaluation on depression, we set a goal of extraction of features in depressive electroencephalography (EEG). Unlike other studies in this field, this study has mainly two points of unique. Firstly, this feature analysis is using signal from just one channel located in frontal lobe (Fp1). Secondly, the acquisition of EEG was conducted during actual clinical inquiry or under similar situation. After the experiment, EEG of both depression patients and healthy controls were compared through two-sample t-test.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
抑郁症患者脑电图特征分析
最近,全世界有许多人患有抑郁症等精神疾病。虽然它们含糊不清,难以掌握患者的状态,但实际上它们降低了患者的生活质量。抑郁症对经济、生活和生活质量造成的总体损失是不可忽视的。重要的是患者要从抑郁症中恢复过来,健康对照者也要避免患上抑郁症。因此,正确的诊断和治疗对人们至关重要。在临床实践中,诊断不正确已成为一个不容忽视的问题。为了建立一种客观的评价抑郁症的方法,我们设定了抑郁症脑电图特征提取的目标。与该领域的其他研究不同,本研究主要有两点独特之处。首先,该特征分析仅使用位于额叶(Fp1)的一个通道的信号。其次,脑电图采集是在实际临床问诊或类似情况下进行的。实验结束后,采用双样本t检验对抑郁症患者和健康对照组的脑电图进行比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Veterinary Medicine Engineering Challenges and Opportunities Kinematic Data Clustering for Healthy Knee Gait Characterization A Nanosurface Microfluidic Device for Capture and Detection of Bacteria A Novel Fully Differential NMR Transciever Automated Enumeration and Classification of Bacteria in Fluorescent Microscopy Imagery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1