A Novel Semi-Supervised Learning for Collaborative Image Retrieval

Wei Liu, Wenhui Li
{"title":"A Novel Semi-Supervised Learning for Collaborative Image Retrieval","authors":"Wei Liu, Wenhui Li","doi":"10.1109/CISE.2009.5366586","DOIUrl":null,"url":null,"abstract":"Content-based image retrieval (CBIR) solutions with regular Euclidean metric usually cannot achieve satisfactory performance due to the semantic gap. Hence, relevance feedback has been adopted as a promising approach to improve the search performance. In this paper, we propose a novel idea of learning with historical relevance feedback log-data,and adopt a new methodology called“Collaborative Image Retrieval” (CIR). To effectively search the log data,we propose a novel semisupervised distance metric learning technique, called “Laplacian Regularized Metric Learning” (LRML), for learning robust distance metrics for CIR.Different from previous methods,the proposed LRML method integrates both log data and unlabeled data information through an effective graph regularization framework. We show that reliable metrics can be learned from real log data eventhey may be noisy and limited at the beginning stage of a CIR system. Keywordssemi-supervised learning ; Collaborative Image Retrieval ; semantic gap","PeriodicalId":135441,"journal":{"name":"2009 International Conference on Computational Intelligence and Software Engineering","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Computational Intelligence and Software Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISE.2009.5366586","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Content-based image retrieval (CBIR) solutions with regular Euclidean metric usually cannot achieve satisfactory performance due to the semantic gap. Hence, relevance feedback has been adopted as a promising approach to improve the search performance. In this paper, we propose a novel idea of learning with historical relevance feedback log-data,and adopt a new methodology called“Collaborative Image Retrieval” (CIR). To effectively search the log data,we propose a novel semisupervised distance metric learning technique, called “Laplacian Regularized Metric Learning” (LRML), for learning robust distance metrics for CIR.Different from previous methods,the proposed LRML method integrates both log data and unlabeled data information through an effective graph regularization framework. We show that reliable metrics can be learned from real log data eventhey may be noisy and limited at the beginning stage of a CIR system. Keywordssemi-supervised learning ; Collaborative Image Retrieval ; semantic gap
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种新的半监督学习协同图像检索方法
基于内容的图像检索(CBIR)方案采用规则的欧几里得度量,由于语义差距的存在,往往不能达到令人满意的检索效果。因此,相关性反馈被认为是一种很有前途的提高搜索性能的方法。本文提出了一种利用历史相关反馈日志数据进行学习的新思路,并采用了一种称为“协同图像检索”(CIR)的新方法。为了有效地搜索日志数据,我们提出了一种新的半监督距离度量学习技术,称为“拉普拉斯正则化度量学习”(LRML),用于学习cirr的鲁棒距离度量。与以往的方法不同,该方法通过有效的图正则化框架将日志数据和未标记数据信息集成在一起。我们证明了可靠的指标可以从真实的日志数据中学习,即使它们在CIR系统的开始阶段可能是有噪声的和有限的。关键词半监督学习;协同图像检索;语义鸿沟
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Lung Collapse during Mini-Thoracotomy Reduces Penetration of Cefuroxime to the Tissue: Interstitial Microdialysis Study in Animal Models.
IF 2 4区 医学Surgical infectionsPub Date : 2021-04-01 DOI: 10.1089/sur.2019.273
Martin Děrgel, Martin Voborník, Marek Pojar, Mikita Karalko, Jan Gofus, Věra Radochová, Šárka Studená, Jana Maláková, Zdeněk Turek, Jaroslav Chládek, Jiří Manďák
Weight-based cefuroxime dosing provides comparable orthopedic target tissue concentrations between weight groups – a microdialysis porcine study
IF 2.8 4区 医学ApmisPub Date : 2021-12-04 DOI: 10.1111/apm.13198
Sara Kousgaard Tøstesen, Pelle Hanberg, Mats Bue, Theis Muncholm Thillemann, Thomas Falstie-Jensen, Mikkel Tøttrup, Martin Bruun Knudsen, Anne Vibeke Schmedes, Maiken Stilling
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subspace Affine Pseudoframes with a Generalized Multiresolution Structure and the Pyramid Decomposition Scheme Research of the Knowledge Reasoning Based on Extensional Description Logics ALC-Plus Energy-Saving Analysis for a 600MW Coal-Fired Supercritical Power Plant A Case Study on Tailoring Software Process for Characteristics Based on RUP Research on STEP-NC Based Machining and On-Machine Inspecting Simulation System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1