Multi-task Joint Learning for Videos in the Wild

Yongwon Hong, Hoseong Kim, H. Byun
{"title":"Multi-task Joint Learning for Videos in the Wild","authors":"Yongwon Hong, Hoseong Kim, H. Byun","doi":"10.1145/3265987.3265988","DOIUrl":null,"url":null,"abstract":"Most of the conventional state-of-the-art methods for video analysis achieve outstanding performance by combining two or more different inputs, e.g. an RGB image, a motion image, or an audio signal, in a two-stream manner. Although these approaches generate pronounced performance, it underlines that each considered feature is tantamount in the classification of the video. This dilutes the nature of each class that every class depends on the different levels of information from different features. To incorporate the nature of each class, we present the class nature specific fusion that combines the features with a different level of weights for the optimal class result. In this work, we first represent each frame-level video feature as a spectral image to train convolutional neural networks (CNNs) on the RGB and audio features. We then revise the conventional two-stream fusion method to form a class nature specific one by combining features in different weight for different classes. We evaluate our method on the Comprehensive Video Understanding in the Wild dataset to understand how each class reacted on each feature in wild videos. Our experimental results not only show the advantage over conventional two-stream fusion, but also illustrate the correlation of two features: RGB and audio signal for each class.","PeriodicalId":151362,"journal":{"name":"Proceedings of the 1st Workshop and Challenge on Comprehensive Video Understanding in the Wild","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 1st Workshop and Challenge on Comprehensive Video Understanding in the Wild","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3265987.3265988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Most of the conventional state-of-the-art methods for video analysis achieve outstanding performance by combining two or more different inputs, e.g. an RGB image, a motion image, or an audio signal, in a two-stream manner. Although these approaches generate pronounced performance, it underlines that each considered feature is tantamount in the classification of the video. This dilutes the nature of each class that every class depends on the different levels of information from different features. To incorporate the nature of each class, we present the class nature specific fusion that combines the features with a different level of weights for the optimal class result. In this work, we first represent each frame-level video feature as a spectral image to train convolutional neural networks (CNNs) on the RGB and audio features. We then revise the conventional two-stream fusion method to form a class nature specific one by combining features in different weight for different classes. We evaluate our method on the Comprehensive Video Understanding in the Wild dataset to understand how each class reacted on each feature in wild videos. Our experimental results not only show the advantage over conventional two-stream fusion, but also illustrate the correlation of two features: RGB and audio signal for each class.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
野外视频多任务联合学习
大多数传统的最先进的视频分析方法通过以两流方式组合两个或多个不同的输入,例如RGB图像,运动图像或音频信号,来实现出色的性能。尽管这些方法产生了显著的性能,但它强调了每个考虑的特征在视频分类中都是相同的。这淡化了每个类的本质,每个类依赖于来自不同特征的不同级别的信息。为了结合每个类的性质,我们提出了特定于类性质的融合,该融合将特征与不同级别的权重相结合,以获得最佳的类结果。在这项工作中,我们首先将每个帧级视频特征表示为光谱图像,以在RGB和音频特征上训练卷积神经网络(cnn)。然后对传统的双流融合方法进行修正,将不同类别的不同权重特征结合起来,形成针对类别性质的融合方法。我们在野生数据集的综合视频理解上评估我们的方法,以了解每个类对野生视频中的每个特征的反应。我们的实验结果不仅显示了传统双流融合的优势,而且还说明了每个类别的RGB和音频信号两个特征的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Session details: Session 2: Challenge Track Proceedings of the 1st Workshop and Challenge on Comprehensive Video Understanding in the Wild Multi-task Joint Learning for Videos in the Wild Deep Video Understanding: Representation Learning, Action Recognition, and Language Generation Video Understanding via Convolutional Temporal Pooling Network and Multimodal Feature Fusion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1