Shajahan Aboobacker, Akash Verma, Deepu Vijayasenan, Sumam David S., P. Suresh, Saraswathy Sreeram
{"title":"Semantic Segmentation on Low Resolution Cytology Images of Pleural and Peritoneal Effusion","authors":"Shajahan Aboobacker, Akash Verma, Deepu Vijayasenan, Sumam David S., P. Suresh, Saraswathy Sreeram","doi":"10.1109/NCC55593.2022.9806747","DOIUrl":null,"url":null,"abstract":"Automation in the detection of malignancy in effusion cytology helps to save time and workload for cytopathologists. Cytopathologists typically consider a low-resolution image to identify the malignant regions. The identified regions are scanned at a higher resolution to confirm malignancy by investigating the cell level behaviour. Scanning and processing time can be saved by zooming only the identified malignant regions instead of entire low-resolution images. This work predicts malignancy in cytology images at a very low resolution (4X). Annotation of cytology images at a very low resolution is challenging due to the blurring of features such as nuclei and texture. We address this issue by upsampling the very low-resolution images using adversarial training. This work develops a semantic segmentation model trained on 10X images and reuse the network to utilize the 4X images. The prediction results of low resolution images improved by 15% in average F-score for adversarial based upsampling compared to a bicubic filter. The high resolution model gives a 95% average F-score for high resolution images. Also, the sub-area of the whole slide that requires to be scanned at high magnification is reduced by approximately 61% while using adversarial based upsampling compared to a bicubic filter.","PeriodicalId":403870,"journal":{"name":"2022 National Conference on Communications (NCC)","volume":"272 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 National Conference on Communications (NCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NCC55593.2022.9806747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Automation in the detection of malignancy in effusion cytology helps to save time and workload for cytopathologists. Cytopathologists typically consider a low-resolution image to identify the malignant regions. The identified regions are scanned at a higher resolution to confirm malignancy by investigating the cell level behaviour. Scanning and processing time can be saved by zooming only the identified malignant regions instead of entire low-resolution images. This work predicts malignancy in cytology images at a very low resolution (4X). Annotation of cytology images at a very low resolution is challenging due to the blurring of features such as nuclei and texture. We address this issue by upsampling the very low-resolution images using adversarial training. This work develops a semantic segmentation model trained on 10X images and reuse the network to utilize the 4X images. The prediction results of low resolution images improved by 15% in average F-score for adversarial based upsampling compared to a bicubic filter. The high resolution model gives a 95% average F-score for high resolution images. Also, the sub-area of the whole slide that requires to be scanned at high magnification is reduced by approximately 61% while using adversarial based upsampling compared to a bicubic filter.