C. Bobda, Taylor J. L. Whitaker, Joel Mandebi Mbongue, S. Saha
{"title":"Synthesis of Hardware Sandboxes for Trojan Mitigation in Systems on Chip","authors":"C. Bobda, Taylor J. L. Whitaker, Joel Mandebi Mbongue, S. Saha","doi":"10.1109/HPEC.2019.8916526","DOIUrl":null,"url":null,"abstract":"In this work, we propose a high-level synthesis approach for hardware sandboxes in system-on-chip. Using interface formalism to capture interactions between non-trusted IPs and trusted parts of a system on chip, along with the properties specification language to specify non-authorized actions of non-trusted IPs, sandboxes are generated and made ready for inclusion as IP in a system-on-chip design. The concepts of composition, compatibility, and refinement are used to capture illegal actions and optimize resources across the boundary of single IPs. We have designed a tool that automatically generates the sandbox and facilitates their integration into system-on-chip. Our approach was validated with benchmarks from trust-hub.com and FPGA implementations. All our results showed 100% Trojan detection and mitigation, with only a minimal increase in resource overhead and no performance decrease.","PeriodicalId":184253,"journal":{"name":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE High Performance Extreme Computing Conference (HPEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HPEC.2019.8916526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
In this work, we propose a high-level synthesis approach for hardware sandboxes in system-on-chip. Using interface formalism to capture interactions between non-trusted IPs and trusted parts of a system on chip, along with the properties specification language to specify non-authorized actions of non-trusted IPs, sandboxes are generated and made ready for inclusion as IP in a system-on-chip design. The concepts of composition, compatibility, and refinement are used to capture illegal actions and optimize resources across the boundary of single IPs. We have designed a tool that automatically generates the sandbox and facilitates their integration into system-on-chip. Our approach was validated with benchmarks from trust-hub.com and FPGA implementations. All our results showed 100% Trojan detection and mitigation, with only a minimal increase in resource overhead and no performance decrease.