Active Learning with Support Vector Machines in the Relevance Feedback Document Retrieval

T. Onoda, H. Murata, S. Yamada
{"title":"Active Learning with Support Vector Machines in the Relevance Feedback Document Retrieval","authors":"T. Onoda, H. Murata, S. Yamada","doi":"10.1109/ICARCV.2006.345363","DOIUrl":null,"url":null,"abstract":"This paper describes an application of SVM (support vector machines) to interactive document retrieval using active document showing. Some works have been done to apply classification learning like SVM to relevance feedback and obtained successful results. However they did not fully utilize characteristic of example distribution in document retrieval. We propose heuristics to bias document showing according to distribution of examples in document retrieval. This heuristic is executed by selecting examples to show a user in neighbors of positive support vectors, and it improves learning efficiency. We implemented a SVM-based interactive document retrieval system using our proposed heuristic, and compare it with conventional systems like Rocchio-based system and a SVM-based system without the heuristic. We conducted systematic experiments using large data sets including over 500,000 paper articles and confirmed our system outperformed other ones","PeriodicalId":415827,"journal":{"name":"2006 9th International Conference on Control, Automation, Robotics and Vision","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 9th International Conference on Control, Automation, Robotics and Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICARCV.2006.345363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper describes an application of SVM (support vector machines) to interactive document retrieval using active document showing. Some works have been done to apply classification learning like SVM to relevance feedback and obtained successful results. However they did not fully utilize characteristic of example distribution in document retrieval. We propose heuristics to bias document showing according to distribution of examples in document retrieval. This heuristic is executed by selecting examples to show a user in neighbors of positive support vectors, and it improves learning efficiency. We implemented a SVM-based interactive document retrieval system using our proposed heuristic, and compare it with conventional systems like Rocchio-based system and a SVM-based system without the heuristic. We conducted systematic experiments using large data sets including over 500,000 paper articles and confirmed our system outperformed other ones
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于支持向量机的主动学习在相关反馈文档检索中的应用
本文描述了支持向量机在基于主动文档显示的交互式文档检索中的应用。将支持向量机等分类学习应用到相关反馈中,已经取得了一些成功的成果。但在文献检索中没有充分利用样本分布的特点。在文献检索中,我们提出了基于样本分布的启发式方法来偏向文献显示。该启发式算法通过选择实例在正支持向量的邻域中显示用户来执行,提高了学习效率。我们使用我们提出的启发式实现了一个基于svm的交互式文档检索系统,并将其与基于rocchio的传统系统和不使用启发式的基于svm的系统进行了比较。我们使用超过50万篇论文的大数据集进行了系统实验,并证实了我们的系统优于其他系统
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
μ-Interaction Measure for Unstable Systems GestureCam: A Smart Camera for Gesture Recognition and Gesture-Controlled Web Navigation A HHMM-Based Approach for Robust Fall Detection Verifying a User in a Personal Face Space The Effect of Image Resolution on the Performance of a Face Recognition System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1