Wavelets-Based Smoothness Metric for Volume Data

Mong-shu Lee, S. Ueng, Jhih-Jhong Lin
{"title":"Wavelets-Based Smoothness Metric for Volume Data","authors":"Mong-shu Lee, S. Ueng, Jhih-Jhong Lin","doi":"10.1109/CGIV.2013.20","DOIUrl":null,"url":null,"abstract":"In this paper we describe an objective smoothness assessment method for volume data. The metric can predict the extent of the difference in smoothness between a reference model, which may not be of perfect quality, and a distorted version. The proposed metric is based on the wavelet characterization of Besov function spaces. The comparison of Besov norm between two models can resolve the global and local differences in smoothness between them. Experimental results from volume datasets with smoothing and sharpening operations demonstrate its effectiveness. Also, the proposed smoothness index correlates well with human perceived vision when compared with direct volume rendered images.","PeriodicalId":342914,"journal":{"name":"2013 10th International Conference Computer Graphics, Imaging and Visualization","volume":"77 12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference Computer Graphics, Imaging and Visualization","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIV.2013.20","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper we describe an objective smoothness assessment method for volume data. The metric can predict the extent of the difference in smoothness between a reference model, which may not be of perfect quality, and a distorted version. The proposed metric is based on the wavelet characterization of Besov function spaces. The comparison of Besov norm between two models can resolve the global and local differences in smoothness between them. Experimental results from volume datasets with smoothing and sharpening operations demonstrate its effectiveness. Also, the proposed smoothness index correlates well with human perceived vision when compared with direct volume rendered images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于小波的体积数据平滑度度量
本文提出了一种体数据平滑度的客观评价方法。该度量可以预测参考模型(可能不具有完美质量)和扭曲版本之间平滑度差异的程度。该度量基于Besov函数空间的小波表征。两个模型之间的Besov范数比较可以解决全局和局部平滑度的差异。在体数据集上进行平滑和锐化操作的实验结果证明了该方法的有效性。此外,与直接体渲染图像相比,所提出的平滑指数与人类感知视觉具有良好的相关性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Survey of 2D and 3D Shape Descriptors Multi-touch Multi-user Interactive Control System Using Mobile Devices Real-Time Rendering of Rough Refraction under Dynamically Varying Environmental Lighting Texture Synthesis Approach Using Cooperative Features Conversion of Rational Bezier Curves into Non-rational Bezier Curves Using Progressive Iterative Approximation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1