Anomaly detection based on contiguous expert voting algorithm

Minghao Yang, Da-peng Chen, Xiao-Song Zhang
{"title":"Anomaly detection based on contiguous expert voting algorithm","authors":"Minghao Yang, Da-peng Chen, Xiao-Song Zhang","doi":"10.1109/ICACIA.2009.5361127","DOIUrl":null,"url":null,"abstract":"Malicious intrusion is the behavior that threats a large number of computers; therefore, recent research has focused on devising new techniques to detect and control internet intrusion with high efficiency and low cost. Unfortunately some anomaly detection system (ADS) over machine learning may get some false alarms if the results of machine learning cannot cover all the normal or abnormal data. In this paper, to solve this problem, we introduce a new approach for anomaly detection using contiguous expert voting algorithm (CEVS). At first, we present our framework of the anomaly detection system, and then we define a new algorithm based on data mining, at last we will use this algorithm to detect the internet anomaly and report our experimental result. The results show that the proposed approach can improve the detection performance of the ADS, where traditional anomaly detection system is used.","PeriodicalId":423210,"journal":{"name":"2009 International Conference on Apperceiving Computing and Intelligence Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 International Conference on Apperceiving Computing and Intelligence Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICACIA.2009.5361127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Malicious intrusion is the behavior that threats a large number of computers; therefore, recent research has focused on devising new techniques to detect and control internet intrusion with high efficiency and low cost. Unfortunately some anomaly detection system (ADS) over machine learning may get some false alarms if the results of machine learning cannot cover all the normal or abnormal data. In this paper, to solve this problem, we introduce a new approach for anomaly detection using contiguous expert voting algorithm (CEVS). At first, we present our framework of the anomaly detection system, and then we define a new algorithm based on data mining, at last we will use this algorithm to detect the internet anomaly and report our experimental result. The results show that the proposed approach can improve the detection performance of the ADS, where traditional anomaly detection system is used.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于连续专家投票算法的异常检测
恶意入侵是指威胁大量计算机的行为;因此,如何高效、低成本地检测和控制网络入侵已成为当前研究的热点。然而,一些基于机器学习的异常检测系统(ADS),如果机器学习的结果不能覆盖所有的正常或异常数据,可能会产生一些误报。为了解决这一问题,我们引入了一种新的异常检测方法——连续专家投票算法(CEVS)。首先给出了异常检测系统的框架,然后定义了一种基于数据挖掘的新算法,最后将该算法应用于网络异常检测,并报告了实验结果。结果表明,在传统异常检测系统中,该方法可以提高ADS的检测性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cache replacement strategy for streaming media based on semantic mining A lock-free algorithm for union-find with deletion Optimized GM (1, 1) based on Romber algorithm and quadratic interpolation method Analysis of acupuncture point signal using Wavelet Transform and higher-order statistical method Distributed anomaly detection by model sharing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1