New bilinear formulation to semi-supervised classification based on Kernel Spectral Clustering

V. Jumutc, J. Suykens
{"title":"New bilinear formulation to semi-supervised classification based on Kernel Spectral Clustering","authors":"V. Jumutc, J. Suykens","doi":"10.1109/CIDM.2014.7008146","DOIUrl":null,"url":null,"abstract":"In this paper we present a novel semi-supervised classification approach which combines bilinear formulation for non-parallel binary classifiers based upon Kernel Spectral Clustering. The cornerstone of our approach is a bilinear term introduced into the primal formulation of semi-supervised classification problem. In addition we perform separate manifold regularization for each individual classifier. The latter relates to the Kernel Spectral Clustering unsupervised counterpart which helps to obtain more precise and generalizable classification boundaries. We derive the dual problem which can be effectively translated into a linear system of equations and then solved without introducing extra costs. In our experiments we show the usefulness and report considerable improvements in performance with respect to other semi-supervised approaches, like Laplacian SVMs and other KSC-based models.","PeriodicalId":117542,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":"153 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2014.7008146","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we present a novel semi-supervised classification approach which combines bilinear formulation for non-parallel binary classifiers based upon Kernel Spectral Clustering. The cornerstone of our approach is a bilinear term introduced into the primal formulation of semi-supervised classification problem. In addition we perform separate manifold regularization for each individual classifier. The latter relates to the Kernel Spectral Clustering unsupervised counterpart which helps to obtain more precise and generalizable classification boundaries. We derive the dual problem which can be effectively translated into a linear system of equations and then solved without introducing extra costs. In our experiments we show the usefulness and report considerable improvements in performance with respect to other semi-supervised approaches, like Laplacian SVMs and other KSC-based models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于核谱聚类的半监督分类新双线性公式
本文提出了一种基于核谱聚类的非并行二元分类器双线性组合的半监督分类方法。该方法的基础是在半监督分类问题的原始公式中引入双线性项。此外,我们对每个分类器执行单独的流形正则化。后者涉及到核谱聚类的无监督对应物,有助于获得更精确和可推广的分类边界。我们导出了一个对偶问题,它可以有效地转化为一个线性方程组,然后在不引入额外费用的情况下求解。在我们的实验中,我们展示了实用性,并报告了相对于其他半监督方法(如拉普拉斯支持向量机和其他基于ksc的模型)在性能上的显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic relevance source determination in human brain tumors using Bayesian NMF Interpolation and extrapolation: Comparison of definitions and survey of algorithms for convex and concave hulls Generalized kernel framework for unsupervised spectral methods of dimensionality reduction Convex multi-task relationship learning using hinge loss Aggregating predictions vs. aggregating features for relational classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1