MuMMI: multiple metrics modeling infrastructure for exploring performance and power modeling

Xingfu Wu, Hung-Ching Chang, S. Moore, V. Taylor, Chun-Yi Su, D. Terpstra, Charles W. Lively, K. Cameron, Chee Wai Lee
{"title":"MuMMI: multiple metrics modeling infrastructure for exploring performance and power modeling","authors":"Xingfu Wu, Hung-Ching Chang, S. Moore, V. Taylor, Chun-Yi Su, D. Terpstra, Charles W. Lively, K. Cameron, Chee Wai Lee","doi":"10.1145/2484762.2484773","DOIUrl":null,"url":null,"abstract":"MuMMI (Multiple Metrics Modeling Infrastructure) environment is an infrastructure that facilitates systematic measurement, modeling, and prediction of performance, power consumption and performance-power tradeoffs for parallel systems. MuMMI builds upon three existing frameworks: Prophesy for performance modeling and prediction of parallel applications, PAPI for hardware performance counter monitoring, and PowerPack for power measurement and profiling. In this paper, we present the MuMMI framework, which consists of an Instrumentor, Databases and Analyzer. The MuMMI Instrumentor provides automatic performance and power data collection and storage with low overhead. The MuMMI Databases extend the databases of Prophesy to store power and energy consumption and hardware performance counters' data with different CPU frequency settings. The MuMMI Analyzer extends the data analysis component of Prophesy to support power consumption and hardware performance counters, and it entails performance and power modeling, performance-power tradeoff and optimizations, and web-based automated modeling system. Currently, our MuMMI online automated performance and power modeling system uses four modeling techniques: curve fitting, parameterization, kernel coupling and performance-counters-based, we discuss the effort to automate the process of developing performance and power models for scientific applications online, and focus on exploring performance-counters-based performance and power modeling. The MuMMI environment is able to aid in performance and power data measurement, storage, modeling and prediction of scientific applications on XSEDE resources in XSEDE community.","PeriodicalId":426819,"journal":{"name":"Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Conference on Extreme Science and Engineering Discovery Environment: Gateway to Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2484762.2484773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

MuMMI (Multiple Metrics Modeling Infrastructure) environment is an infrastructure that facilitates systematic measurement, modeling, and prediction of performance, power consumption and performance-power tradeoffs for parallel systems. MuMMI builds upon three existing frameworks: Prophesy for performance modeling and prediction of parallel applications, PAPI for hardware performance counter monitoring, and PowerPack for power measurement and profiling. In this paper, we present the MuMMI framework, which consists of an Instrumentor, Databases and Analyzer. The MuMMI Instrumentor provides automatic performance and power data collection and storage with low overhead. The MuMMI Databases extend the databases of Prophesy to store power and energy consumption and hardware performance counters' data with different CPU frequency settings. The MuMMI Analyzer extends the data analysis component of Prophesy to support power consumption and hardware performance counters, and it entails performance and power modeling, performance-power tradeoff and optimizations, and web-based automated modeling system. Currently, our MuMMI online automated performance and power modeling system uses four modeling techniques: curve fitting, parameterization, kernel coupling and performance-counters-based, we discuss the effort to automate the process of developing performance and power models for scientific applications online, and focus on exploring performance-counters-based performance and power modeling. The MuMMI environment is able to aid in performance and power data measurement, storage, modeling and prediction of scientific applications on XSEDE resources in XSEDE community.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MuMMI:用于探索性能和功率建模的多个度量建模基础设施
MuMMI(多重度量建模基础设施)环境是一种基础设施,可以促进并行系统的性能、功耗和性能-功率权衡的系统测量、建模和预测。MuMMI建立在三个现有框架之上:用于并行应用程序的性能建模和预测的prophecy,用于硬件性能计数器监控的PAPI,以及用于功率测量和分析的PowerPack。本文提出了一个由仪器、数据库和分析器组成的MuMMI框架。MuMMI Instrumentor提供低开销的自动性能和功率数据收集和存储。MuMMI数据库扩展了prophet的数据库,以存储不同CPU频率设置的功耗和能耗以及硬件性能计数器的数据。MuMMI Analyzer扩展了预言的数据分析组件,以支持功耗和硬件性能计数器,它需要性能和功率建模、性能-功率权衡和优化,以及基于web的自动化建模系统。目前,我们的MuMMI在线自动化性能和功率建模系统使用了四种建模技术:曲线拟合、参数化、核耦合和基于性能计数器的建模,我们讨论了为科学应用在线开发性能和功率模型的过程,并重点探讨了基于性能计数器的性能和功率建模。MuMMI环境能够帮助XSEDE社区中基于XSEDE资源的科学应用进行性能和功耗数据测量、存储、建模和预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimizing utilization across XSEDE platforms Adaptive latency-aware parallel resource mapping: task graph scheduling onto heterogeneous network topology Optimizing the PCIT algorithm on stampede's Xeon and Xeon Phi processors for faster discovery of biological networks Training, education, and outreach: raising the bar Preliminary experiences with the uintah framework on Intel Xeon Phi and stampede
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1