PID controller tuning using hybrid optimisation technique based on Box's evolutionary optimisation and teacher-learner-based-optimisation

Vinay Pratap Singh, N. Patnana, S. P. Singh
{"title":"PID controller tuning using hybrid optimisation technique based on Box's evolutionary optimisation and teacher-learner-based-optimisation","authors":"Vinay Pratap Singh, N. Patnana, S. P. Singh","doi":"10.1504/ijcaet.2020.10029108","DOIUrl":null,"url":null,"abstract":"In this paper, a hybrid optimisation technique based on Box's evolutionary optimisation and teacher-learner-based-optimisation (BEO-TLBO) is proposed for proportional-integral-derivative (PID) controller tuning of level control of three-tank system. The integral-square-error (ISE) of unit step response is minimised for obtaining optimal controller parameters. The ISE is designed in terms of alpha and beta parameters. In BEO-TLBO, a global search is first carried out over the entire search space to determine the set of desired controller parameters using teacher-learner-based-optimisation (TLBO). The search is then refined in the second stage using Box's evolutionary optimisation (BEO). The results obtained using BEO-TLBO are compared with other existing techniques. Computer simulations reveal that the hybrid optimisation based approach meets the desired specifications with greater accuracy as compared to the other existing methods.","PeriodicalId":346646,"journal":{"name":"Int. J. Comput. Aided Eng. Technol.","volume":"101 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Aided Eng. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijcaet.2020.10029108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, a hybrid optimisation technique based on Box's evolutionary optimisation and teacher-learner-based-optimisation (BEO-TLBO) is proposed for proportional-integral-derivative (PID) controller tuning of level control of three-tank system. The integral-square-error (ISE) of unit step response is minimised for obtaining optimal controller parameters. The ISE is designed in terms of alpha and beta parameters. In BEO-TLBO, a global search is first carried out over the entire search space to determine the set of desired controller parameters using teacher-learner-based-optimisation (TLBO). The search is then refined in the second stage using Box's evolutionary optimisation (BEO). The results obtained using BEO-TLBO are compared with other existing techniques. Computer simulations reveal that the hybrid optimisation based approach meets the desired specifications with greater accuracy as compared to the other existing methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用基于Box进化优化和基于教师-学习者优化的混合优化技术对PID控制器进行整定
本文提出了一种基于Box进化优化和基于教师-学习者的优化(BEO-TLBO)的混合优化技术,用于三缸系统液位控制的比例-积分-导数(PID)控制器整定。最小化单位阶跃响应的积分平方误差(ISE)以获得最优控制器参数。ISE是根据α和β参数设计的。在BEO-TLBO中,首先在整个搜索空间中进行全局搜索,以使用基于教师-学习者的优化(TLBO)来确定所需的控制器参数集。然后在第二阶段使用Box的进化优化(BEO)对搜索进行细化。用BEO-TLBO得到的结果与其他现有技术进行了比较。计算机模拟表明,与其他现有方法相比,基于混合优化的方法以更高的精度满足所需的规格。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A study on the machinability behaviour of Al6061-ZnO(p) metal matrix composite through wire-cut electro discharge machining using multi objective optimisation on the basis of ratio analysis Parameter optimisation of a fibre reinforced polymer composite by RSM design matrix A close scrutiny of dApps and developing an e-voting dApp using Ethereum Blockchain The impact of work integrated learning towards students' learning: the case of ICT students in South African universities of technology A novel study and research on multilayer AlAs/GaAs quantum dot inner layer for solar cell applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1