Breast Cancer Diagnosis from Histopathology Images using Supervised Algorithms

Alberto Labrada, B. Barkana
{"title":"Breast Cancer Diagnosis from Histopathology Images using Supervised Algorithms","authors":"Alberto Labrada, B. Barkana","doi":"10.1109/CBMS55023.2022.00025","DOIUrl":null,"url":null,"abstract":"Breast cancer is the most common cancer type worldwide. In cancer studies, histopathological breast images are used in the process of diagnosis. In this paper, we defined three sets of features to represent the characteristics of the cell nuclei to detect malignant cases. Geometric, directional, and intensity-based features, a total of 33, are derived and evaluated using breast cancer histopathological images from the BreaKHis database. Four machine learning algorithms, including Decision Tree, Support Vector Machines, K-Nearest Neighbor, and Narrow Neural Networks (NNN), are designed to assess the efficiency of the sets. The preliminary results showed that the proposed methodology achieved high performance in classifying cancerous cells as the directional feature set was the most effective set among the three sets. The combination of the sets achieved the best performance by the NNN, which reached an accuracy, recall, precision, AUC, and F1 score of 96.9%, 97.4%, 98%, 98.8%, and 97.7%, respectively.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"131 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Breast cancer is the most common cancer type worldwide. In cancer studies, histopathological breast images are used in the process of diagnosis. In this paper, we defined three sets of features to represent the characteristics of the cell nuclei to detect malignant cases. Geometric, directional, and intensity-based features, a total of 33, are derived and evaluated using breast cancer histopathological images from the BreaKHis database. Four machine learning algorithms, including Decision Tree, Support Vector Machines, K-Nearest Neighbor, and Narrow Neural Networks (NNN), are designed to assess the efficiency of the sets. The preliminary results showed that the proposed methodology achieved high performance in classifying cancerous cells as the directional feature set was the most effective set among the three sets. The combination of the sets achieved the best performance by the NNN, which reached an accuracy, recall, precision, AUC, and F1 score of 96.9%, 97.4%, 98%, 98.8%, and 97.7%, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用监督算法从组织病理学图像中诊断乳腺癌
乳腺癌是世界上最常见的癌症类型。在癌症研究中,组织病理学乳房图像用于诊断过程。在本文中,我们定义了三组特征来表示细胞核的特征,以检测恶性病例。基于几何、方向和强度的特征,共33个,使用BreaKHis数据库中的乳腺癌组织病理学图像进行导出和评估。四种机器学习算法,包括决策树、支持向量机、k近邻和窄神经网络(NNN),被设计用来评估集合的效率。初步结果表明,所提出的方法在癌细胞分类方面取得了较高的性能,其中方向特征集是三个集合中最有效的集合。这些集合的组合达到了NNN的最佳性能,准确率、召回率、精度、AUC和F1得分分别达到96.9%、97.4%、98%、98.8%和97.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrasonic Carotid Blood Flow Velocimetry Based on Deep Complex Neural Network Graph-based Regional Feature Enhancing for Abdominal Multi-Organ Segmentation in CT Exploiting AI to make insulin pens smart: injection site recognition and lipodystrophy detection Subgroup Discovery Analysis of Treatment Patterns in Lung Cancer Patients Estimating Predictive Uncertainty in Gastrointestinal Polyp Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1