{"title":"A comparative study of channel designs for SiC MOSFETs: Accumulation mode channel vs. inversion mode channel","authors":"Woongje Sung, Kijeong Han, B. Baliga","doi":"10.23919/ISPSD.2017.7988996","DOIUrl":null,"url":null,"abstract":"This paper provides detailed comparison of electrical characteristics of accumulation mode and inversion mode 1.2 kV SiC MOSFETs, including performance at high temperatures (up to 200 °C). Statistical data measured from over 50 dies on 6-inch SiC wafers was used for this comparison. It is concluded that the accumulation mode SiC MOSFET provides a lower specific on-resistance than the inversion mode MOSFET due to a higher channel mobility (∼ 22 cm2/V·s) while achieving a reasonable threshold voltage (∼ 2.3 V). Based on statistical data analyses, a strong correlation between the threshold voltage and the field effect channel mobility was identified.","PeriodicalId":202561,"journal":{"name":"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)","volume":"103 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 29th International Symposium on Power Semiconductor Devices and IC's (ISPSD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ISPSD.2017.7988996","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20
Abstract
This paper provides detailed comparison of electrical characteristics of accumulation mode and inversion mode 1.2 kV SiC MOSFETs, including performance at high temperatures (up to 200 °C). Statistical data measured from over 50 dies on 6-inch SiC wafers was used for this comparison. It is concluded that the accumulation mode SiC MOSFET provides a lower specific on-resistance than the inversion mode MOSFET due to a higher channel mobility (∼ 22 cm2/V·s) while achieving a reasonable threshold voltage (∼ 2.3 V). Based on statistical data analyses, a strong correlation between the threshold voltage and the field effect channel mobility was identified.