Evolution Strategies with Additive Noise: A Convergence Rate Lower Bound

S. Morales, M. Cauwet, O. Teytaud
{"title":"Evolution Strategies with Additive Noise: A Convergence Rate Lower Bound","authors":"S. Morales, M. Cauwet, O. Teytaud","doi":"10.1145/2725494.2725500","DOIUrl":null,"url":null,"abstract":"We consider the problem of optimizing functions corrupted with additive noise. It is known that Evolutionary Algorithms can reach a Simple Regret O(1/√n) within logarithmic factors, when n is the number of function evaluations. Here, Simple Regret at evaluation $n$ is the difference between the evaluation of the function at the current recommendation point of the algorithm and at the real optimum. We show mathematically that this bound is tight, for any family of functions that includes sphere functions, at least for a wide set of Evolution Strategies without large mutations.","PeriodicalId":112331,"journal":{"name":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","volume":"223 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 ACM Conference on Foundations of Genetic Algorithms XIII","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2725494.2725500","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21

Abstract

We consider the problem of optimizing functions corrupted with additive noise. It is known that Evolutionary Algorithms can reach a Simple Regret O(1/√n) within logarithmic factors, when n is the number of function evaluations. Here, Simple Regret at evaluation $n$ is the difference between the evaluation of the function at the current recommendation point of the algorithm and at the real optimum. We show mathematically that this bound is tight, for any family of functions that includes sphere functions, at least for a wide set of Evolution Strategies without large mutations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有加性噪声的进化策略:收敛速率下界
研究了被加性噪声破坏的函数的优化问题。已知进化算法可以在对数因子范围内达到简单后悔0(1/√n),其中n为函数评估的次数。这里,Simple Regret at evaluation $n$是函数在算法当前推荐点的评价值与实际最优值的差值。我们从数学上证明,对于任何包含球函数的函数族,至少对于没有大突变的广泛进化策略集,这个界是紧的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Insights From Adversarial Fitness Functions Hypomixability Elimination In Evolutionary Systems Black-box Complexity of Parallel Search with Distributed Populations Information Geometry of the Gaussian Distribution in View of Stochastic Optimization Fixed Budget Performance of the (1+1) EA on Linear Functions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1