Yijian Cui, Xiaolin Meng, Qusen Chen, Yang Gao, Changxue Xu, Simon Roberts, Yi-Ting Wang
{"title":"Feasibility analysis of low-cost GNSS receivers for achieving required positioning performance in CAV applications","authors":"Yijian Cui, Xiaolin Meng, Qusen Chen, Yang Gao, Changxue Xu, Simon Roberts, Yi-Ting Wang","doi":"10.1109/CPGPS.2017.8075154","DOIUrl":null,"url":null,"abstract":"For Connected and Autonomous Vehicle (CAV) applications, the location solution is desired to provide better than 0.1m real-time positioning accuracy. This level of accuracy can only be achieved by using geodetic GNSS receivers under an open sky observation condition, and each unit costs around £20,000. This kind of geodetic GNSS receiver is not a good option for mass market use in terms of price and ubiquity aspects. Therefore, using low-cost receiver to achieve real-time, high accuracy and ubiquitous positioning performance could be a future trend. This paper will first establish a framework of assessing low-cost receivers based on required navigation performance (RNP) concept in aviation and required accuracy categories in ITS. Then adynamic test that was conducted to simulate the future CAV driving environment will be introduced. Under the guidance of the former established framework, the collected data was post-processed to explore the real positioning performance of both two grades receivers. By comparing real-time/post-processed results and high-end/low-cost receivers, the limitations and technical gaps between two types of receivers, as well as current positioning solution and required positioning performance will be identified.","PeriodicalId":340067,"journal":{"name":"2017 Forum on Cooperative Positioning and Service (CPGPS)","volume":"133 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 Forum on Cooperative Positioning and Service (CPGPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CPGPS.2017.8075154","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
For Connected and Autonomous Vehicle (CAV) applications, the location solution is desired to provide better than 0.1m real-time positioning accuracy. This level of accuracy can only be achieved by using geodetic GNSS receivers under an open sky observation condition, and each unit costs around £20,000. This kind of geodetic GNSS receiver is not a good option for mass market use in terms of price and ubiquity aspects. Therefore, using low-cost receiver to achieve real-time, high accuracy and ubiquitous positioning performance could be a future trend. This paper will first establish a framework of assessing low-cost receivers based on required navigation performance (RNP) concept in aviation and required accuracy categories in ITS. Then adynamic test that was conducted to simulate the future CAV driving environment will be introduced. Under the guidance of the former established framework, the collected data was post-processed to explore the real positioning performance of both two grades receivers. By comparing real-time/post-processed results and high-end/low-cost receivers, the limitations and technical gaps between two types of receivers, as well as current positioning solution and required positioning performance will be identified.