Data-driven fault diagnosis of oil rig motor pumps applying automatic definition and selection of features

E. D. Wandekokem, Frederico Thomaz de Aquino Franzosi, T. Rauber, F. M. Varejão, R. J. Batista
{"title":"Data-driven fault diagnosis of oil rig motor pumps applying automatic definition and selection of features","authors":"E. D. Wandekokem, Frederico Thomaz de Aquino Franzosi, T. Rauber, F. M. Varejão, R. J. Batista","doi":"10.1109/DEMPED.2009.5292765","DOIUrl":null,"url":null,"abstract":"We report about fault diagnosis experiments to improve the maintenance quality of motor pumps installed on oil rigs. We rely on the data-driven approach to the learning of the fault classes, i.e. supervised learning in pattern recognition. Features are extracted from the vibration signals to detect and diagnose misalignment and mechanical looseness problems. We show the results of automatic pattern recognition methods to define and select features that describe the faults of the provided examples. The support vector machine is chosen as the classification architecture.","PeriodicalId":405777,"journal":{"name":"2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DEMPED.2009.5292765","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

We report about fault diagnosis experiments to improve the maintenance quality of motor pumps installed on oil rigs. We rely on the data-driven approach to the learning of the fault classes, i.e. supervised learning in pattern recognition. Features are extracted from the vibration signals to detect and diagnose misalignment and mechanical looseness problems. We show the results of automatic pattern recognition methods to define and select features that describe the faults of the provided examples. The support vector machine is chosen as the classification architecture.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于特征自动定义和选择的石油钻机电油泵数据驱动故障诊断
为提高石油钻机电泵的维修质量,进行了故障诊断实验。我们依靠数据驱动的方法来学习故障类,即模式识别中的监督学习。从振动信号中提取特征以检测和诊断不对准和机械松动问题。我们展示了自动模式识别方法的结果,以定义和选择描述所提供示例的故障的特征。选择支持向量机作为分类体系结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Comparative study of two modelling implementation methods of a wound-rotor induction machine: Simulation, fault diagnosis and validation Fault diagnosis of linear bearings in brushless AC linear motors Detection of insulation faults on disc-type winding transformers by means of leakage flux analysis Narrowband angle modulations in induction motor complex current vectors Thermal modeling and real time overload capacity prediction of overhead power lines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1