IoT-Enabled Smart Bike Helmet with an AI-Driven Collision Avoidance System

Jacob Solus, Maureen Rakotondraibe, Xinrui Yu, Won-Jae Yi, M. Gromov, J. Saniie
{"title":"IoT-Enabled Smart Bike Helmet with an AI-Driven Collision Avoidance System","authors":"Jacob Solus, Maureen Rakotondraibe, Xinrui Yu, Won-Jae Yi, M. Gromov, J. Saniie","doi":"10.1109/eIT57321.2023.10187299","DOIUrl":null,"url":null,"abstract":"This paper presents a system design for a smart bike helmet with multiple safety features that are intended to empower bicycle riders to proactively avoid potential sources of danger or injury. A Smart Sensor/Actuator Node (SSAN), driven by an Arduino Uno single-board microcontroller, contains input sensors and actuators to provide riders the ability to send and receive warnings promptly on their helmet. A Vision Node, driven by an NVIDIA Jetson Nano and a cable pin-connected camera, executes AI object detection algorithms for any dangerous objects that are out of sight of the rider and sends alerts to the SSAN as needed. By combining safety features of the SSAN and Vision Node while continuously sending data to an IoT-enabled backend web server, the safety operation of a typical bike ride can be substantially improved.","PeriodicalId":113717,"journal":{"name":"2023 IEEE International Conference on Electro Information Technology (eIT)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Electro Information Technology (eIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/eIT57321.2023.10187299","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a system design for a smart bike helmet with multiple safety features that are intended to empower bicycle riders to proactively avoid potential sources of danger or injury. A Smart Sensor/Actuator Node (SSAN), driven by an Arduino Uno single-board microcontroller, contains input sensors and actuators to provide riders the ability to send and receive warnings promptly on their helmet. A Vision Node, driven by an NVIDIA Jetson Nano and a cable pin-connected camera, executes AI object detection algorithms for any dangerous objects that are out of sight of the rider and sends alerts to the SSAN as needed. By combining safety features of the SSAN and Vision Node while continuously sending data to an IoT-enabled backend web server, the safety operation of a typical bike ride can be substantially improved.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有人工智能防撞系统的物联网智能自行车头盔
本文提出了一种具有多种安全功能的智能自行车头盔的系统设计,旨在使自行车骑行者能够主动避开潜在的危险或伤害源。智能传感器/执行器节点(SSAN),由Arduino Uno单板微控制器驱动,包含输入传感器和执行器,为骑手提供在头盔上及时发送和接收警告的能力。视觉节点由NVIDIA Jetson Nano和电缆引脚连接的摄像头驱动,执行人工智能物体检测算法,检测驾驶员视线之外的任何危险物体,并根据需要向SSAN发送警报。通过结合SSAN和Vision Node的安全功能,同时不断向支持物联网的后端web服务器发送数据,可以大大提高典型自行车骑行的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Correlation of Egg counts, Micro-nutrients, and NDVI Distribution for Accurate Tracking of SCN Population Density Detection Supervised Deep Learning Models for Detecting GPS Spoofing Attacks on Unmanned Aerial Vehicles ChatGPT: A Threat Against the CIA Triad of Cyber Security Smart UX-design for Rescue Operations Wearable - A Knowledge Graph Informed Visualization Approach for Information Retrieval in Emergency Situations Comparative Study of Deep Learning LSTM and 1D-CNN Models for Real-time Flood Prediction in Red River of the North, USA
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1