Fault Classification in Microgrids using Deep Learning

Sainesh Karan, H. Yeh
{"title":"Fault Classification in Microgrids using Deep Learning","authors":"Sainesh Karan, H. Yeh","doi":"10.1109/IGESSC50231.2020.9285101","DOIUrl":null,"url":null,"abstract":"In this work, two neural network models i.e. Long - Short Term Memory (LSTM) Networks and Convolutional Neural Networks (CNN) are employed to classify faults in microgrids. We used Matlab/Simulink to model a modified IEEE-13 bus feeder and simulate 11 types of faults to generate training and testing data. Additive White Gaussian Noise (AWGN) and Additive Impulsive Gaussian Noise (AIGN) are added to the data to make it closer to real-world data. The data is pre-processed using Discrete Wavelet Transform (DWT) and Multi-Resolution Analysis (MRA). The investigation showed that the LSTM network out-performed the CNN classifier and achieved high accuracy in classifying the faults using only one signal cycle of post fault voltage.","PeriodicalId":437709,"journal":{"name":"2020 IEEE Green Energy and Smart Systems Conference (IGESSC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Green Energy and Smart Systems Conference (IGESSC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGESSC50231.2020.9285101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

In this work, two neural network models i.e. Long - Short Term Memory (LSTM) Networks and Convolutional Neural Networks (CNN) are employed to classify faults in microgrids. We used Matlab/Simulink to model a modified IEEE-13 bus feeder and simulate 11 types of faults to generate training and testing data. Additive White Gaussian Noise (AWGN) and Additive Impulsive Gaussian Noise (AIGN) are added to the data to make it closer to real-world data. The data is pre-processed using Discrete Wavelet Transform (DWT) and Multi-Resolution Analysis (MRA). The investigation showed that the LSTM network out-performed the CNN classifier and achieved high accuracy in classifying the faults using only one signal cycle of post fault voltage.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的微电网故障分类
本文采用长短期记忆(LSTM)网络和卷积神经网络(CNN)两种神经网络模型对微电网故障进行分类。利用Matlab/Simulink对改进后的IEEE-13总线馈线进行建模,并对11种故障进行仿真,生成训练和测试数据。加性高斯白噪声(AWGN)和加性脉冲高斯噪声(AIGN)被添加到数据中,使其更接近真实数据。采用离散小波变换(DWT)和多分辨率分析(MRA)对数据进行预处理。研究表明,LSTM网络优于CNN分类器,仅使用故障后电压的一个信号周期就能达到较高的故障分类精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IGESSC 2020 Committees IGESSC 2020 Breaker Page Modeling and Development of a HIL Testbed for DER Dynamics Integration Demonstration A Review on Smart LED Lighting Systems Deep Convolutional Neural Networks for Road Extraction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1