Fast estimation of feedback parameters for a self-mixing interferometric displacement sensor

Imran Ahmed, U. Zabit
{"title":"Fast estimation of feedback parameters for a self-mixing interferometric displacement sensor","authors":"Imran Ahmed, U. Zabit","doi":"10.1109/C-CODE.2017.7918966","DOIUrl":null,"url":null,"abstract":"Self-mixing interferometry (SMI) is an attractive sensing scheme increasingly used for distance, velocity, flow and vibration sensing for applications such as rotational speed of servo drives, detection of single micro-particles in airflow, size measurement of Brownian particles, terahertz imaging etc. In order to retrieve target displacement information with sub-wavelength precision from the SMI signal, two key SMI parameters, namely optical feedback coupling factor C and line-width enhancement factor alpha need to be estimated. In this paper, we propose a fast method to jointly estimate C and alpha parameters in the context of SMI laser displacement sensor. For this purpose, we apply Newton's algorithm to quickly converge to the optimum C and alpha values. Compared to previous methods, this new method enables us to significantly reduce the computation time of parameter estimation and could play a vital role in the development of real-time self-mixing interferometric sensors with sub-wavelength precision.","PeriodicalId":344222,"journal":{"name":"2017 International Conference on Communication, Computing and Digital Systems (C-CODE)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Communication, Computing and Digital Systems (C-CODE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/C-CODE.2017.7918966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Self-mixing interferometry (SMI) is an attractive sensing scheme increasingly used for distance, velocity, flow and vibration sensing for applications such as rotational speed of servo drives, detection of single micro-particles in airflow, size measurement of Brownian particles, terahertz imaging etc. In order to retrieve target displacement information with sub-wavelength precision from the SMI signal, two key SMI parameters, namely optical feedback coupling factor C and line-width enhancement factor alpha need to be estimated. In this paper, we propose a fast method to jointly estimate C and alpha parameters in the context of SMI laser displacement sensor. For this purpose, we apply Newton's algorithm to quickly converge to the optimum C and alpha values. Compared to previous methods, this new method enables us to significantly reduce the computation time of parameter estimation and could play a vital role in the development of real-time self-mixing interferometric sensors with sub-wavelength precision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自混合干涉位移传感器反馈参数的快速估计
自混合干涉测量(SMI)是一种有吸引力的传感方案,越来越多地用于距离、速度、流量和振动传感,如伺服驱动器的转速、气流中单个微颗粒的检测、布朗粒子的尺寸测量、太赫兹成像等应用。为了从SMI信号中提取亚波长精度的目标位移信息,需要估计两个关键的SMI参数,即光反馈耦合因子C和线宽增强因子alpha。在SMI激光位移传感器中,我们提出了一种快速联合估计C和α参数的方法。为此,我们应用牛顿算法快速收敛到最优C和α值。与以往的方法相比,该方法大大减少了参数估计的计算时间,对研制亚波长精度的实时自混合干涉传感器具有重要意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A control channel based MAC protocol for time critical and emergency communications in Industrial Wireless Sensor Networks Security framework of Ultralightweight Mutual Authentication Protocols for low cost RFID tags 5G cellular network integration with SDN: Challenges, issues and beyond Performance comparisons of fixed and adaptive beamforming techniques for 4G smart antennas Usage of gamification in enterprise: A review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1