ECG heartbeat classification based on combined features extracted by PCA, KPCA, AKPCA and DWT

Junhao Zhu, Yi Zeng, Jianheng Zhou, Xunde Dong
{"title":"ECG heartbeat classification based on combined features extracted by PCA, KPCA, AKPCA and DWT","authors":"Junhao Zhu, Yi Zeng, Jianheng Zhou, Xunde Dong","doi":"10.1109/CBMS55023.2022.00034","DOIUrl":null,"url":null,"abstract":"Automatic ECG beat classification plays an important role in detecting cardiac disease. In this paper, we propose an automatic recognition model for ECG signals based on discrete wavelet transform (DWT), principal component analysis (PCA), kernel principal component analysis (KPCA), and adaptive kernel principal component analysis (AKPCA). We extracted different ECG features using DWT, PCA, KPCA, and AKPCA, respectively. These features were combined and used as support vector machine (SVM) input to classify the ECG. ECG records taken from the MIT-BIH arrhythmia database are selected to test the proposed method. The following five heartbeat types were classified using this method: normal beats (N), premature ventricular beats (V), right bundle branch block beats (R), left bundle branch block beats (L), and premature atrial beats (A). The sensitivity, accuracy, precision, and specificity reached 99.95%, 99.86%, 99.53%, and 99.70%, respectively. These results indicate the proposed method is reliable and efficient for ECG beat classification.","PeriodicalId":218475,"journal":{"name":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","volume":"283 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 35th International Symposium on Computer-Based Medical Systems (CBMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CBMS55023.2022.00034","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Automatic ECG beat classification plays an important role in detecting cardiac disease. In this paper, we propose an automatic recognition model for ECG signals based on discrete wavelet transform (DWT), principal component analysis (PCA), kernel principal component analysis (KPCA), and adaptive kernel principal component analysis (AKPCA). We extracted different ECG features using DWT, PCA, KPCA, and AKPCA, respectively. These features were combined and used as support vector machine (SVM) input to classify the ECG. ECG records taken from the MIT-BIH arrhythmia database are selected to test the proposed method. The following five heartbeat types were classified using this method: normal beats (N), premature ventricular beats (V), right bundle branch block beats (R), left bundle branch block beats (L), and premature atrial beats (A). The sensitivity, accuracy, precision, and specificity reached 99.95%, 99.86%, 99.53%, and 99.70%, respectively. These results indicate the proposed method is reliable and efficient for ECG beat classification.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于PCA、KPCA、AKPCA和DWT提取的组合特征的心电心跳分类
心电脉搏自动分类在心脏病诊断中具有重要作用。本文提出了一种基于离散小波变换(DWT)、主成分分析(PCA)、核主成分分析(KPCA)和自适应核主成分分析(AKPCA)的心电信号自动识别模型。我们分别使用DWT、PCA、KPCA和AKPCA提取不同的心电特征。将这些特征组合起来作为支持向量机(SVM)输入对心电信号进行分类。从MIT-BIH心律失常数据库中选择心电图记录来测试所提出的方法。采用该方法对正常心跳(N)、室性早搏(V)、右束支传导阻滞心跳(R)、左束支传导阻滞心跳(L)、房性早搏(A)五种心跳类型进行分类,灵敏度、准确度、精密度、特异性分别达到99.95%、99.86%、99.53%、99.70%。实验结果表明,该方法是一种可靠、有效的心电拍分类方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultrasonic Carotid Blood Flow Velocimetry Based on Deep Complex Neural Network Graph-based Regional Feature Enhancing for Abdominal Multi-Organ Segmentation in CT Exploiting AI to make insulin pens smart: injection site recognition and lipodystrophy detection Subgroup Discovery Analysis of Treatment Patterns in Lung Cancer Patients Estimating Predictive Uncertainty in Gastrointestinal Polyp Segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1