J. Semião, J. Freijedo, M. Moraes, M. Mallmann, C. Antunes, J. Benfica, F. Vargas, Marcelino B. Santos, I. Teixeira, J. Rodríguez-Andina, João Paulo Teixeira, D. Lupi, E. Gatti, L. Garcia, F. Hernandez
{"title":"Measuring clock-signal modulation efficiency for Systems-on-Chip in electromagnetic interference environment","authors":"J. Semião, J. Freijedo, M. Moraes, M. Mallmann, C. Antunes, J. Benfica, F. Vargas, Marcelino B. Santos, I. Teixeira, J. Rodríguez-Andina, João Paulo Teixeira, D. Lupi, E. Gatti, L. Garcia, F. Hernandez","doi":"10.1109/LATW.2009.4813817","DOIUrl":null,"url":null,"abstract":"As IC technology scales down, signal integrity issues such as power supply noise and clock skews are becoming one of the major concerns of gigahertz system-on-chip (SoC) design. Considering that one of the most important mechanisms to degrade signal integrity is electromagnetic interference (EMI), this paper analyzes the effectiveness of a clock duty-cycle (CDC) modulation technique to enhance SoC signal integrity with respect to power/ground voltage transients induced by EMI. The technique is based on a clock stretching logic (CSL) block, which monitors abnormal power grid activity and increases CDC accordingly. Practical experiments based on the implementation of a 32-bit soft-core pipeline processor in an FPGA IC were performed and illustrate the circuit robustness enhancement to power line fluctuations while maintaining at-speed clock rate. These experiments were conducted according to the IEC 62.132-2. Normative for measurement of radiated electromagnetic immunity (TEM-cell method).","PeriodicalId":343240,"journal":{"name":"2009 10th Latin American Test Workshop","volume":"62 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 10th Latin American Test Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LATW.2009.4813817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
As IC technology scales down, signal integrity issues such as power supply noise and clock skews are becoming one of the major concerns of gigahertz system-on-chip (SoC) design. Considering that one of the most important mechanisms to degrade signal integrity is electromagnetic interference (EMI), this paper analyzes the effectiveness of a clock duty-cycle (CDC) modulation technique to enhance SoC signal integrity with respect to power/ground voltage transients induced by EMI. The technique is based on a clock stretching logic (CSL) block, which monitors abnormal power grid activity and increases CDC accordingly. Practical experiments based on the implementation of a 32-bit soft-core pipeline processor in an FPGA IC were performed and illustrate the circuit robustness enhancement to power line fluctuations while maintaining at-speed clock rate. These experiments were conducted according to the IEC 62.132-2. Normative for measurement of radiated electromagnetic immunity (TEM-cell method).