Investigation of Single-Band and Multi-Band Power System Stabilizers Towards Transient Stability Improvement in Electrical Networks

A. Alsakati, C. Vaithilingam, J. Alnasseir, A. Jagadeeshwaran
{"title":"Investigation of Single-Band and Multi-Band Power System Stabilizers Towards Transient Stability Improvement in Electrical Networks","authors":"A. Alsakati, C. Vaithilingam, J. Alnasseir, A. Jagadeeshwaran","doi":"10.1109/CENCON51869.2021.9627246","DOIUrl":null,"url":null,"abstract":"Power System Stabilizers (PSSs) are utilized to improve the stability of electrical networks and provide additional damping to reduce electromechanical oscillations. PSS is developed to cope with different oscillation modes, such as global, local, and inter-area modes. Several PSS designs have been discussed in the literature, including single input, dual-input and Multi-Band (MB) PSS. In this research, different PSSs designs (PSS1A, $P$ SS3B, and MB-PSS4B) are investigated, and a four-machine system is considered with two areas and modeled using MATLAB/Simulink. The results indicate that the performance of optimized MB-PSS4B is better than PSS1A and $P$ SS3B where the settling time of power angle is reduced. The settling time decreased to 4.24 s when the OMB-PSS4B is used. Moreover, there is a small reduction in the peak power angle with the utilization of OMB-PSS4B.","PeriodicalId":101715,"journal":{"name":"2021 IEEE Conference on Energy Conversion (CENCON)","volume":"85 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE Conference on Energy Conversion (CENCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CENCON51869.2021.9627246","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Power System Stabilizers (PSSs) are utilized to improve the stability of electrical networks and provide additional damping to reduce electromechanical oscillations. PSS is developed to cope with different oscillation modes, such as global, local, and inter-area modes. Several PSS designs have been discussed in the literature, including single input, dual-input and Multi-Band (MB) PSS. In this research, different PSSs designs (PSS1A, $P$ SS3B, and MB-PSS4B) are investigated, and a four-machine system is considered with two areas and modeled using MATLAB/Simulink. The results indicate that the performance of optimized MB-PSS4B is better than PSS1A and $P$ SS3B where the settling time of power angle is reduced. The settling time decreased to 4.24 s when the OMB-PSS4B is used. Moreover, there is a small reduction in the peak power angle with the utilization of OMB-PSS4B.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高电网暂态稳定性的单频段和多频段电力系统稳定器研究
电力系统稳定器(pss)用于提高电网的稳定性,并提供额外的阻尼来减少机电振荡。PSS的发展是为了应对不同的振荡模式,如全球,局部和区域间模式。文献中讨论了几种PSS设计,包括单输入、双输入和多频段PSS。在本研究中,研究了不同的PSS1A, $P$ SS3B和MB-PSS4B设计,并考虑了一个四机系统,分为两个区域,并使用MATLAB/Simulink进行建模。结果表明,优化后的MB-PSS4B性能优于PSS1A和pss3b,减小了功率角的稳定时间。采用OMB-PSS4B时,沉淀时间缩短至4.24 s。此外,使用OMB-PSS4B后,峰值功率角有较小的减小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Refined Predictive Torque Control for Two-Level Voltage Source Inverter of Induction Motor Modelling and Analysis of 18-Pulse Rectification System for DC Traction Power Substation Optimization of InGaAsSb Thermophotovoltaic Cell for Waste Heat Harvesting Application Multiple Input Single Output Converter with Uneven Load Sharing Control for Improved Efficiency Characterization and Optimization of Lattice-Matched InGaAs TPV Cell for Waste Heat Harvesting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1