Feasibility and Availability Based Heuristics for ACO Algorithms Solving Binary CSP

Nicolás Rojas-Morales, M. Riff, B. Neveu
{"title":"Feasibility and Availability Based Heuristics for ACO Algorithms Solving Binary CSP","authors":"Nicolás Rojas-Morales, M. Riff, B. Neveu","doi":"10.1109/CEC.2018.8477747","DOIUrl":null,"url":null,"abstract":"A Constraint Satisfaction Problem is composed by a set of variables, their related domains and a set of constraints among the variables that must be satisfied. These are known as hard problems to be solved. Many algorithms have been proposed to solve these problems. Metaheuristics and in particular ant-based algorithms have been used to solve difficult instances. In this paper, we propose new heuristics to be included in an ant-based algorithm in order to improve its performance when tackling hard constraint satisfaction problems. These heuristics are focused on the availability of consistent variable values and to restrict the ants collaborative information to the feasibility. To evaluate these heuristics we used the well-known Ant Solver algorithm and tested with problem instances from the transition phase. Results show that using our heuristics the Ants algorithm increases the number of problems that it is able to solve. Finally, a statistical analysis is presented to compare these approaches.","PeriodicalId":212677,"journal":{"name":"2018 IEEE Congress on Evolutionary Computation (CEC)","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Congress on Evolutionary Computation (CEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2018.8477747","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Constraint Satisfaction Problem is composed by a set of variables, their related domains and a set of constraints among the variables that must be satisfied. These are known as hard problems to be solved. Many algorithms have been proposed to solve these problems. Metaheuristics and in particular ant-based algorithms have been used to solve difficult instances. In this paper, we propose new heuristics to be included in an ant-based algorithm in order to improve its performance when tackling hard constraint satisfaction problems. These heuristics are focused on the availability of consistent variable values and to restrict the ants collaborative information to the feasibility. To evaluate these heuristics we used the well-known Ant Solver algorithm and tested with problem instances from the transition phase. Results show that using our heuristics the Ants algorithm increases the number of problems that it is able to solve. Finally, a statistical analysis is presented to compare these approaches.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于可行性和有效性的蚁群算法求解二元CSP
约束满足问题是由一组变量、它们的相关域以及必须满足的变量之间的一组约束组成的。这些被称为需要解决的难题。已经提出了许多算法来解决这些问题。元启发式,特别是基于蚁群的算法已被用于解决困难的实例。在本文中,我们提出了新的启发式算法,以提高其在处理硬约束满足问题时的性能。这些启发式方法主要关注于一致性变量值的可用性,并将蚂蚁的协同信息限制在可行性范围内。为了评估这些启发式算法,我们使用了著名的Ant Solver算法,并使用过渡阶段的问题实例进行了测试。结果表明,使用我们的启发式蚂蚁算法增加了它能够解决的问题数量。最后,通过统计分析对这些方法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Automatic Evolution of AutoEncoders for Compressed Representations Landscape-Based Differential Evolution for Constrained Optimization Problems A Novel Approach for Optimizing Ensemble Components in Rainfall Prediction A Many-Objective Evolutionary Algorithm with Fast Clustering and Reference Point Redistribution Manyobjective Optimization to Design Physical Topology of Optical Networks with Undefined Node Locations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1