An investigation of computational and informational limits in Gaussian mixture clustering

N. Srebro, Gregory Shakhnarovich, S. Roweis
{"title":"An investigation of computational and informational limits in Gaussian mixture clustering","authors":"N. Srebro, Gregory Shakhnarovich, S. Roweis","doi":"10.1145/1143844.1143953","DOIUrl":null,"url":null,"abstract":"We investigate under what conditions clustering by learning a mixture of spherical Gaussians is (a) computationally tractable; and (b) statistically possible. We show that using principal component projection greatly aids in recovering the clustering using EM; present empirical evidence that even using such a projection, there is still a large gap between the number of samples needed to recover the clustering using EM, and the number of samples needed without computational restrictions; and characterize the regime in which such a gap exists.","PeriodicalId":124011,"journal":{"name":"Proceedings of the 23rd international conference on Machine learning","volume":"219 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 23rd international conference on Machine learning","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1143844.1143953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 27

Abstract

We investigate under what conditions clustering by learning a mixture of spherical Gaussians is (a) computationally tractable; and (b) statistically possible. We show that using principal component projection greatly aids in recovering the clustering using EM; present empirical evidence that even using such a projection, there is still a large gap between the number of samples needed to recover the clustering using EM, and the number of samples needed without computational restrictions; and characterize the regime in which such a gap exists.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高斯混合聚类的计算和信息极限研究
我们研究了在什么条件下,通过学习球状高斯函数的混合聚类是(a)计算上可处理的;(b)统计上可能。我们发现主成分投影极大地帮助了EM聚类的恢复;提供经验证据表明,即使使用这样的投影,使用EM恢复聚类所需的样本数量与不受计算限制所需的样本数量之间仍然存在很大差距;并描述存在这种差距的制度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
On a theory of learning with similarity functions Bayesian learning of measurement and structural models Predictive search distributions Data association for topic intensity tracking Feature value acquisition in testing: a sequential batch test algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1