A multiple bandwidth objective speech intelligibility estimator based on articulation index band correlations and attention

S. Voran
{"title":"A multiple bandwidth objective speech intelligibility estimator based on articulation index band correlations and attention","authors":"S. Voran","doi":"10.1109/ICASSP.2017.7953128","DOIUrl":null,"url":null,"abstract":"We present ABC-MRT16—a new algorithm for objective estimation of speech intelligibility following the Modified Rhyme Test (MRT) paradigm. ABC-MRT16 is simple, effective and robust. When compared to subjective MRT data from 367 diverse conditions that include coding, noise, frame erasures, and much more, ABC-MRT16 (containing just one optimized parameter) yields a very high Pearson correlation (above 0.95) and a remarkably low RMS estimation error (below 7% of full scale.) We attribute these successes to concise modeling of core human processes in audition and forced-choice word selection. On each trial, ABC-MRT16 gathers word selection evidence in the form of articulation index band correlations and then uses a simple attention model to perform word selection using the best available evidence. Attending to best evidence allows ABC-MRT16 to work well for narrowband, wideband, superwideband, and fullband speech and noise without any bandwidth detection algorithm or side information.","PeriodicalId":118243,"journal":{"name":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP.2017.7953128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present ABC-MRT16—a new algorithm for objective estimation of speech intelligibility following the Modified Rhyme Test (MRT) paradigm. ABC-MRT16 is simple, effective and robust. When compared to subjective MRT data from 367 diverse conditions that include coding, noise, frame erasures, and much more, ABC-MRT16 (containing just one optimized parameter) yields a very high Pearson correlation (above 0.95) and a remarkably low RMS estimation error (below 7% of full scale.) We attribute these successes to concise modeling of core human processes in audition and forced-choice word selection. On each trial, ABC-MRT16 gathers word selection evidence in the form of articulation index band correlations and then uses a simple attention model to perform word selection using the best available evidence. Attending to best evidence allows ABC-MRT16 to work well for narrowband, wideband, superwideband, and fullband speech and noise without any bandwidth detection algorithm or side information.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于清晰度指标、频带相关性和注意力的多带宽客观语音可理解度估计
本文提出了abc - mrt16 -一种基于修正韵测试(MRT)范式的语音可理解度客观估计新算法。ABC-MRT16简单、有效、稳健。与来自367种不同条件(包括编码、噪声、帧擦除等)的主观MRT数据相比,ABC-MRT16(仅包含一个优化参数)产生非常高的Pearson相关性(高于0.95)和非常低的RMS估计误差(低于全尺寸的7%)。我们将这些成功归功于在听力和强制选择单词选择中对核心人类过程的简明建模。在每个试验中,ABC-MRT16以发音指数带相关性的形式收集单词选择证据,然后使用一个简单的注意力模型使用最佳可用证据进行单词选择。关注最佳证据使ABC-MRT16在没有任何带宽检测算法或侧信息的情况下,可以很好地工作于窄带,宽带,超宽带和全带语音和噪声。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing observability in power distribution grids A subspace approach for shrinkage parameter selection in undersampled configuration for Regularised Tyler Estimators Artificial bandwidth extension using the constant Q transform Salience based lexical features for emotion recognition Multicore distributed dictionary learning: A microarray gene expression biclustering case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1