VizLOD: Schema Extraction And Visualization Of Linked Open Data

Chutiporn Anutariya, Reshma Dangol
{"title":"VizLOD: Schema Extraction And Visualization Of Linked Open Data","authors":"Chutiporn Anutariya, Reshma Dangol","doi":"10.1109/JCSSE.2018.8457325","DOIUrl":null,"url":null,"abstract":"Even though the concept of Linked Open Data has been around for over two decades, understanding a new dataset still remains as a challenging task demanding lot of time and effort. Its flexibility of integrating multiple ontolo-gies/vocabularies in itself creates a challenge as it leads to difficulty in understanding the schema of the dataset. In this paper, we propose VizLOD, a web based tool that extracts schema information by inferring ontological characteristics based on the triples in the LOD data sources. SPARQL queries are used for this purpose. The extracted schema information is visualized using an interactive node-link graph that eases the cognitive load on the users. To add clarity to the dataset, instance view is also provided in tabular form and as an instance level graph. Our preliminary experiments have shown some promising results for VizLOD.","PeriodicalId":338973,"journal":{"name":"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2018.8457325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Even though the concept of Linked Open Data has been around for over two decades, understanding a new dataset still remains as a challenging task demanding lot of time and effort. Its flexibility of integrating multiple ontolo-gies/vocabularies in itself creates a challenge as it leads to difficulty in understanding the schema of the dataset. In this paper, we propose VizLOD, a web based tool that extracts schema information by inferring ontological characteristics based on the triples in the LOD data sources. SPARQL queries are used for this purpose. The extracted schema information is visualized using an interactive node-link graph that eases the cognitive load on the users. To add clarity to the dataset, instance view is also provided in tabular form and as an instance level graph. Our preliminary experiments have shown some promising results for VizLOD.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
链接开放数据的模式提取和可视化
尽管关联开放数据的概念已经存在了二十多年,但理解一个新的数据集仍然是一项具有挑战性的任务,需要大量的时间和精力。它本身集成多个本体/词汇表的灵活性带来了挑战,因为它导致难以理解数据集的模式。在本文中,我们提出了一个基于web的工具VizLOD,它基于LOD数据源中的三元组推断本体特征来提取模式信息。SPARQL查询用于此目的。提取的模式信息使用交互式节点链接图进行可视化,从而减轻了用户的认知负担。为了使数据集更加清晰,实例视图还以表格形式和实例级图的形式提供。我们的初步实验显示了VizLOD的一些有希望的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Android Forensic and Security Assessment for Hospital and Stock-and-Trade Applications in Thailand Traffic State Prediction Using Convolutional Neural Network Development of Low-Cost in-the-Ear EEG Prototype JCSSE 2018 Title Page JCSSE 2018 Session Chairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1