Traffic State Prediction Using Convolutional Neural Network

Ratchanon Toncharoen, M. Piantanakulchai
{"title":"Traffic State Prediction Using Convolutional Neural Network","authors":"Ratchanon Toncharoen, M. Piantanakulchai","doi":"10.1109/JCSSE.2018.8457359","DOIUrl":null,"url":null,"abstract":"Traffic state prediction methods have been considered by many researchers since accurate traffic prediction is an important part of the successful implementation of the Intelligent Transportation System (ITS). This study develops the traffic prediction model based on real traffic data in congested hours of expressways in Bangkok, Thailand. Unlike most studies, this model utilizes data from 40 nodes along the expressway instead of a single sensor. A Convolutional Neural Network (CNN) model was applied and compared to other widely used models. The result shows that the accuracy of CNN model is higher than other models.","PeriodicalId":338973,"journal":{"name":"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 15th International Joint Conference on Computer Science and Software Engineering (JCSSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/JCSSE.2018.8457359","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

Traffic state prediction methods have been considered by many researchers since accurate traffic prediction is an important part of the successful implementation of the Intelligent Transportation System (ITS). This study develops the traffic prediction model based on real traffic data in congested hours of expressways in Bangkok, Thailand. Unlike most studies, this model utilizes data from 40 nodes along the expressway instead of a single sensor. A Convolutional Neural Network (CNN) model was applied and compared to other widely used models. The result shows that the accuracy of CNN model is higher than other models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于卷积神经网络的交通状态预测
由于准确的交通预测是智能交通系统成功实施的重要组成部分,交通状态预测方法一直受到许多研究者的关注。本研究基于泰国曼谷高速公路拥堵时段的真实交通数据,建立了交通预测模型。与大多数研究不同,该模型利用高速公路沿线40个节点的数据,而不是单个传感器。采用卷积神经网络(CNN)模型,并与其他广泛使用的模型进行了比较。结果表明,CNN模型的准确率高于其他模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Android Forensic and Security Assessment for Hospital and Stock-and-Trade Applications in Thailand Traffic State Prediction Using Convolutional Neural Network Development of Low-Cost in-the-Ear EEG Prototype JCSSE 2018 Title Page JCSSE 2018 Session Chairs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1