E. Kunkee, S. Consolazio, J. Barner, T. Retelny, G. Dietz, E. Bogus, A. Cavus, J. Chen, J. Uyeda, R. Hsing, P. Chin, A. Ahkiyat, D. Chua, R. Clark, R. Haubenstricker, M. Johnson, T. Nguyen, P. Sahm, E. Zeliasz, R. Lai
{"title":"A mixed HEMT-HBT MMIC technology using MBE regrowth","authors":"E. Kunkee, S. Consolazio, J. Barner, T. Retelny, G. Dietz, E. Bogus, A. Cavus, J. Chen, J. Uyeda, R. Hsing, P. Chin, A. Ahkiyat, D. Chua, R. Clark, R. Haubenstricker, M. Johnson, T. Nguyen, P. Sahm, E. Zeliasz, R. Lai","doi":"10.1109/MWSYM.2008.4633020","DOIUrl":null,"url":null,"abstract":"Current microwave systems are constructed by integrating a large number of single technology components into a final product due to the limitations of any single transistor technology across all functions and metrics, thereby increasing cost and size of a given system. In this paper, we present a fabrication process using Molecular Beam Epitaxy (MBE) regrowth which allows the combination of High Electron Mobility Transistors (HEMT) with Heterostructure Bipolar Transistors (HBT) on a single GaAs chip without compromising the performance of either the HBT or HEMT. HBT fT/Fmax of 40/85 GHz and Beta of 170 for a collector current of 1mA; and HEMT fT/Fmax of 115/160 GHz with a gm-peak of 755 mS/mm has been achieved. Circuit performance demonstrates the potential of performance advances over HEMT-only circuit embodiments.","PeriodicalId":273767,"journal":{"name":"2008 IEEE MTT-S International Microwave Symposium Digest","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 IEEE MTT-S International Microwave Symposium Digest","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSYM.2008.4633020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Current microwave systems are constructed by integrating a large number of single technology components into a final product due to the limitations of any single transistor technology across all functions and metrics, thereby increasing cost and size of a given system. In this paper, we present a fabrication process using Molecular Beam Epitaxy (MBE) regrowth which allows the combination of High Electron Mobility Transistors (HEMT) with Heterostructure Bipolar Transistors (HBT) on a single GaAs chip without compromising the performance of either the HBT or HEMT. HBT fT/Fmax of 40/85 GHz and Beta of 170 for a collector current of 1mA; and HEMT fT/Fmax of 115/160 GHz with a gm-peak of 755 mS/mm has been achieved. Circuit performance demonstrates the potential of performance advances over HEMT-only circuit embodiments.