Fully Unsupervised Person Re-Identification by Enhancing Cluster Samples

Xiumei Chen, Xiangtao Zheng, Kaijian Zhu, Xiaoqiang Lu
{"title":"Fully Unsupervised Person Re-Identification by Enhancing Cluster Samples","authors":"Xiumei Chen, Xiangtao Zheng, Kaijian Zhu, Xiaoqiang Lu","doi":"10.1145/3507971.3507984","DOIUrl":null,"url":null,"abstract":"Fully unsupervised person re-identification aims to train a discriminative model with unlabeled person images. Most existing methods first generate pseudo labels by clustering image features (convolutional features) and then fine-tune the convolutional neural network (CNN) with pseudo labels. However, these methods are greatly limited by the quality of the pseudo labels. In this paper, a cluster sample enhancement method is introduced to increase the reliability of pseudo-label samples to facilitate the CNN training. Specifically, when generating pseudo labels, only the samples with high-confidence pseudo-label predictions are selected. In addition, to enhance the selected samples for training, two different image transformations are adopted and coupled with specific-design loss functions to boost the model performance. Experiments demonstrate the effectiveness of the proposed method. Concretely, the proposed method achieves 87.1% rank-1 and 70.2% mAP accuracy on Market-1501.","PeriodicalId":439757,"journal":{"name":"Proceedings of the 7th International Conference on Communication and Information Processing","volume":"238 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th International Conference on Communication and Information Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3507971.3507984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Fully unsupervised person re-identification aims to train a discriminative model with unlabeled person images. Most existing methods first generate pseudo labels by clustering image features (convolutional features) and then fine-tune the convolutional neural network (CNN) with pseudo labels. However, these methods are greatly limited by the quality of the pseudo labels. In this paper, a cluster sample enhancement method is introduced to increase the reliability of pseudo-label samples to facilitate the CNN training. Specifically, when generating pseudo labels, only the samples with high-confidence pseudo-label predictions are selected. In addition, to enhance the selected samples for training, two different image transformations are adopted and coupled with specific-design loss functions to boost the model performance. Experiments demonstrate the effectiveness of the proposed method. Concretely, the proposed method achieves 87.1% rank-1 and 70.2% mAP accuracy on Market-1501.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于增强聚类样本的完全无监督人再识别
完全无监督人再识别的目的是用未标记的人图像训练一个判别模型。大多数现有的方法首先通过聚类图像特征(卷积特征)生成伪标签,然后用伪标签对卷积神经网络(CNN)进行微调。然而,这些方法受到伪标签质量的极大限制。本文引入聚类样本增强方法,提高伪标签样本的可靠性,方便CNN训练。具体来说,在生成伪标签时,只选择具有高置信度伪标签预测的样本。此外,为了增强选择的训练样本,采用了两种不同的图像变换,并结合特定设计的损失函数来提高模型的性能。实验证明了该方法的有效性。具体而言,该方法在Market-1501上实现了87.1%的rank-1和70.2%的mAP准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Dynamic Path Planning of UAV Based on Pheromone Diffusion Ant Colony Algorithm Access Control Design Based on User Role Type in Telemedicine System Using Ethereum Blockchain Identifying Giant Clams Species using Machine Learning Techniques Blockchain based Distributed Oracle in Time Sensitive Scenario A Reliable Digital Watermarking Algorithm Based On DCT-SVD Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1